
Silicon Compilation of
.Very High Level Languages

Mark W. Kahrs

Computer Science Department

The University of Rochester

Rochester, NY 14627

TR145

October, 1984

Abstract

The report concerns the design and implementation of a compiler for two
Very High Level Languages. The first language is a set language similar to VERS or
SETL. The second language is a novel signal processing language. The compiler uses
data flow and type information to constrain possible choices before choosing a
possible implementation. Heuristic search is then used to choose from competing
implementations of abstract data types. Constraint propagation is used at every
selection step to remove incompatible configurations from the search. Finally, the use
of specialized procedures called "design critics" is proposed to resolve global
constraint conflicts. The output of the compiler is a parts list, a net list of module
interconnections and the fields of the control store.

The preparation of this paper was supported in part by National Science Foundation
Grants No. IST-8012418 and MCS-8104008, and in part by the Defense Advanced
Research Projects Agency, monitored by the ONR, under Contract No. NOOO14-78­
C-0164.

SECURITY CLASSIFICATION OF THIS PAGE (1+'1".n [lBta Entered)

READ INSTRUCTIO~SREPORT DOCUMENTATION PAGE
BEFORE COMPLETIl'G FORM

1. REPORT NUMBER , 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

TR 145
4. TITLE (and Subllll ..) 5. TYPE OF REPORT A PERIOD COVERED

Silicon Compilation of Very High Level Language technical report
6. PERFORMING ORG. REPORT HUMBER

7. AUTHOR(..) 8. CONTRACT OR GRANT NUMBER(,,)

Mark W. Kahrs NOOO14-78-C-0164.

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10.	 PROGRAM ELENENT, PROJECT. TASK
AREA. WORK UNIT NUMBERSComputer Science Department

University of Rochester

Rochester, New York 14627

II.	 CONTROLLING OFFICE "lANE AND ADDRESS 12.	 REPORT DATE
Defense Advanced Research Projects Agency October, 1984
1400 Wil son Bl vd. 13.	 HUMBER OF PAGES
Arlington, Virginia 22209 128

14. MONITORING AGENCY NAME 6 ADDRESS(II dJU..,,,,,, Irom Con'rollln, OllJe ..) 15. SECURITY CLASS. (0/ Ihl. , ...rt)

UnclassifiedOffice of Naval Research r:

Information Systems
IS •• OECL ASSI FICATlONI DOWNGRADINGArlington, Virginia 22217 SCHEDULE

16.	 DISTRIBUTION STATEMENT (01 thl" R ..porl)

"

!Distribution of this document is unl imited.

17.	 DISTRIBUTION STATEMENT (01 the .b"tree' ent..red In SIoel< 20, U dllierenl from Report)

I

/6. SUPPLEMENTARY NOTES

None

19.	 KEY WOPlDS (Continue on rever" .. .old .. II nee.."".". and Id..n~lIy by bloel< number)

integrated circuits, circuit design,VLSI. very high level languages,

20.	 ABSTRACT (Conl/nue on rev..r... "Id.. II n .. e". .nd Id..ntlly by bloel< numb..r)

The report concerns the design and implementation of a compiler for two
Very High Level Languages. The first language is a set language similar to
VERS or SETL. The second language is a novel signal processing language.
The compiler uses data flow and type information to constrain possible
choices before choosing a possible implementation. Heuristic search is then
used to choose from competing concrete implementations of abstract data types
Constraint propagation is used at every selection step to remove incompatible

FORMDO 1473 EDITION OF I HOV 65 IS OBSOLETE1 JAN 71 Unclassified
.SECURITY CLASSIFICATION OF THIS PAGE (When DBt. Enlt"ed)

SECURITy CLASSIFICATION OF THIS PAGE(lIIhen D.t. Enlered)

configurations from the search. Finally, the use of specialized proce­
dures called "design critics" is proposed to resolve global constraint
conflicts. The output of the compiler is a parts list, a net list of
module interconnections and the fields of the control store.

The work reported in this thesis has shown that:

1) Compiler techniques can be used to generate machines from
programs. These machines may then be implemented using VLSI
modules.

2) Very High Level Languages can be used to hide the implemen­
tation complexity of VLSI design.

3) Constraint methods are profitably applicable to the VLSI
problem domain.

4) Heuristic search and constraints can be successfully used to
choose between implementations with differing costs.

5) Resource constraints can be used to control the optimization
of the design by triggering specialized code.

SECURITy CLASSIFICATION OF THIS PAGE(""... Dal. Enlere<l)

Silicon Compilation of Very High level languases

by

MarkWilliam Kahrs

Submitted in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Supervisedby James Allen

Department of Computer Science

University of Rochester

Rochester, New York

1984

e 1984 MarkWilliam Kahrs

Pennission 10 copy withouclee ~II or part 01"'it ma~~1 Is lP'anliod pmyided

INt the copies m not made or distributed kw direct commen:l.al adv~IlU8!,

the copyrishl notice mil the title ~ ~nd notice Is Ilwn INt copyi"" is

by permission 01 the To copy od*Wlee, or 10 republish, ~ires

specifIC permission 01the ~uthor.

A8STIACT

The desisn oi inteBrated circuils is a time consuminB task. As the density oi lhe circuils

increases. so will lhe desisn problems. Several methods have been proposed tor reducinB lhe

desisn complexity for VLSI. Some oi these methods include lhe use oi stick diasrams and

compaction. primitive silicon compilation and lhe automatic seneration oi machines from

low level descriptions. The work presented in this thesis is a step toward lhe ultimate pi oi

compilation oi PfOlVilJnS to silicon.

The thesis concerns lhe desisn and implementation oi a compiler for two Very Hip

Level lanJlU'l8l!5. The first lanauase is • set lanauase similar to VERS or SEll. The second

lanpae is a novel sianal processi,. I~. The compiler uses data flow and type infor­

mation to constrain possible choices before choosinB a possible implementation. Heuristic

search is lhen used to choose from competi,. concrete implementations oi abscrilet data

types. Constraint propaption is used at ttYerV selection step to remove incompatible conti­

BUrations from lhe search. finally, lhe use oi specialized procedures called ·desisn critics·

Is proposed to resolve "'1 constraint confIicls. The output oi lhe compiler is a parIS list, a

net list oi module interconnections and lhe flekk oi lhe control store.

The system described above hill been implemented on a VAX-11 computer in a dialect

oi Lisp. It demonstrates thatexisti,. compiler methodoIoBv can be effectively combined with

ArtifICial Intelli,ence search leChniques to perform selection oi VLSl modules for a very hip

levellanpae. The work reported in this thesis hill shown that:

•	 Compiler techniques can be used to senerate machines from PfOBRms. These

machines may lhen be irnplemenled usin. VLSI modules.

•	 Very Hip Level Lanauqes can be used to hide lhe implementation complexity oi VLSI

desisn

•	 Constraint methods i1I'e protitably applicable to lhe VLSI problem domain

•	 Heuristic search and constrainls can be successfully used to choose between implemen­

tations with differi.. costs

•	 Resource constrainls can be used to control lhe optimization oi lhe desisn by trigerinB

specialized code

Curriculum Vitae

Mark William Kahrs was born at 10:50 a.m. on the 251h of October, 1952 in the Clinic,l
"Villa Margherila" in Roma, Ilalia. He is the son of an American archill'l"! and artist. Relo­
cated with his family 10 San Francisco in 1955, he attended puhlic schools in San Francisco.
Mill V,llley and Palo Alto until 1970. In 1970, ho entered Revelle College .II Ihe University
of California, San Diego. HI' worked his way through college by working summers .IS a svv­
tem programmer at Tymshare, Incorporated in Cupertino, Califorma. He majored in Applit'd
Physics and Informalion Science (with a minor in Music) and graduated in 1974 with high
honors and a good tan. In the summer of 1974 he worked .II the Xerox Palo Alto Research
Center (pARClas a research Intern. He entered the Universily of California, Berkeley in Sep­
lember of 1974, but left after a year. After knocking around for six months, he Joined the
Center for Computer Research in Music and Acoustics at Stanford University (CCRMA) as a
research programmer. While working for CCRMA he completed his Maslers Ihesis for Berke­
ley at the Xerox Palo Alto Research Center. Afler nearly two years at CCRMA, he moved on
to Rochester. During his slay at Rochester he has worked on various occasions .II the Insti­
tute pour Recherche et Coordinalion Acoustique Musique (IRCAM) in Paris, France. At
Rochester he has been a teaching assislanl and a research assistant. He has been responsi­
ble for various pieces of software and hardware. He has also co-authored a guide 10 Roches­
ter for incoming graduate students as well as an introduction 10 the Computer Science Depart­
menl. He has also organized numerous parties and Chinese banquets.

Acknowledgements

II's clearly impossible to try and Ihank everybody who encouraged me 10 flllally get out,
but I'm going to Iry anyway ...

II is customary to thank one's advisor firsl. lames Allen has put up with me for an
extraordinary lime, even though Ihe thesis doesn't have anything to do with Computational
linlluislics. His readings of my drafts are responsible for any clarity present in the final ver­
sion.

The rest of my committee, lerry Feldman, Gershon Kedem and Dave Farden have all
contributed to the final version you sec before you. lim low offered me sage words at vari­
ous times that helped me avoid some sticky tar pits.

During the past year, I have been supported by some of my best friends: Jon Austin,
Diane litman, Peter 5elindge and Ed Smith. They have enabled me to stay independent of
an outside job and avoid distractions. Their generosity will not be easily forgotten.

My officemates of Ihe past three years, lim Heliotis and lee Moore, have put up with
my constant stream of paper pulp. Their patience with my pack-roll habits is appreciated.

Many other people in and out of the department have also helped by amusing, cajoling,
distracting, dancing, eating, gossiping and sleazing wilh me. In particular, I wish to recognize
the talents of Diane, lill, Rose, Irene, Anni, jon, Peter, Ed, lee, Rick, Mayer, Frisch, Gary,
lames, Russell and Haas.

My lost friends on the west coast and my friends in Compuler Music have given me
good times and good cheer when I sorely needed both.

A long time ago, in a place far far away, Norm and Ann Hardy gave me my start in
compuler science. That start has given me more than I can easily stale here.

A special mention goes to nano for loIs of love, affection, food, wine and noodles.

Finally, my parents have put up with me being in school for over 25 years. Their love
and support was uilical 10 making it through those "grad school blues" and this wild eastern
adventure.

This work was partially supported in part by NSF grants 15T-8012418, MCS-8104008
and DARPA IIranl NOOOI4-78-C-Ol &4.

iv v

vii

2.3.1. Data flow analysis 21

2.3.2. Control flow analysis 22

2.3.3. Other forms 01analysis 22

2.3.3.1. Property Elltraetion 24

23.3.1.1. Type determination 24

23.3.1.2. Other properties 24

Table of Contents 2.4. Machine Generation . 24

2.5. Implementation selection 25

2.5.1. Matching 25

2.5.2. selection 27

2.6. Generation . 29
1. Introduction .

3. Constraints . 32
1.1. InbOduction .

3.1. Introduction .. 32
1.2. Goals 01the work .

3.2. Introduction to constraints and problemsolVing . 32
1.3. \\bat this work reports . 2

3.2.1. Representation .. 32

3.2.2. Use in problem soIvi"ll . 33
1.4. An example 01Syslemoperation .. 2

3.3. Use 01constraints in \/lSI desisn . 33
1.5. Relevant work . 7

3.3.1. Introduction . 33
1.5.1. Desillll Automation .. 7

3.3.2. Port constraints . 34
1.5.1.1. Graphic Editors .. 8

3.3.2.1. An example .. 35
1.5.1.2. Layout languases .. 8

3.3.2.2. Constraint propagation alpithm .. 36
1.5.2. Silicon compilers . 9

3.3.3. Matching constraints .. 38
1.5.2.1. BristleBlocks and Siclops . 9

3.3.4. Specification constraints .. 39
1.5.2.2. MacPitts . 10

1.5.2.3. CMU Desisn Automation Syslem .. 10

3.4. Related work in constraints .. 40
1.5.2.4. M1~LA .. 12

3.4.1. Constraints in the analysis 01circuits . 40
1.5.2.5. ARSENIC and Xi .. 13

3.4.2. Constraints and p1anni"ll . 40
1.5.3. A.I. approaches to automati"ll circuit desilP' .. 13

3.4.3. Other constraint based methods .. 41
1.5.4. Vefy Hip ltNell.anguases .. 14

3.4.4. Constraints and search . 41

1.6. ~ 01the thesis . 15

4. Matching . 43

2. Overview of SIU 17

4.1. Introduction 43

2.1. InbOduction . 17

4.2. Matching the library 43

2.2. The modules and their input/output behavior 18

4.3. Graph matching . 44

4.3.1. Ubrary representation . 45
2.3. Information ptheri"ll . 20

vi

viii ix

4.3.2. Matcher operation .. 46 6.3. Machine Generation : . 69

4.3.2.1. The matching a1aorithm .. 46 6.3.1. Control paths . 69

4.3.2.2. An example of graph matchi"l .. 48 6.3.1.1. Control Store Generation .. 72

4.4. Binding and instantiation . SO 6.4. Data paths .. 73

4.4.1. An example . 50
6.5. Generating net lists . 73

4.5. Related work . 50
7. Design critics and Machine modification . 754.5.1. Table driven code aeneration . 51

4.5.2. Idiom recOlP'ition and other matchers .. 51
7.1. Introduction . 75

5. Selection . 53
7.2. How critics are used .. 76

5.1. Introduction . 53
7.3. Possible critics .. 76

7.3.1. Data path operators .. 775.2. Selection usinl seaR:h . 53
7.3.1.1. Data path bundli"l . 775.2.1. Introduction . 53
7.3.1.2. Functional unit shari"l .. 775.2.2. The selection pocedwe . 54

7.3.2. Pipelini"l . 79

5.3. SeaR:h techniques . 55 7.3.3. Pinout limitations . 80
7.3.4. Control section operalOfS . 805.3.1. Introduction .. 55

7.3.4.1. Optimization . 805.3.2. Stapd SeaR:h . 55
5.3.3. Staeed seaR:h analysis .. 56 7.3.4.2. Field encodi"l .. 81

5.3.4. Stapd seaR:h measurements . 57
7.4. ""'-at to do when critics fail .. 815.3.4.1. The search alpldvn .. 59

5.3.5. Past work in selection .. 61
8. Implementation, Results and Conclusion . 82

5.3.5.1. Automatic selection of datastructures .. 61
5.3.5.2. Automatic pnltp'ammi"l .. 62 8.1. Introduction .. 82

5.4. Metrics . 63 8.2. Implementation .. 82
5.4.1. Introduction .. 63
5.4.2. \151 metrics . 63 8.3. Results . 84
5.4.3. Acluil rnelrics .. 64

8.4. Directions for future reseaR:h .. 85
6. Machine generation . 66 8.4.1. Semantics .. 85

8.4.2. Critics . 85
6.1. Introduction . 66 8.4.3. Lack of procedure callinl mechanisms .. 86

8.4.4. Interaction of machines and lansuates . 86
6.2. Machine aR:hitecture and models of computation . 66

8.4.5. Memory hieran:hy .. 87
6.2.1. Harvard machines . 66

8.4.5.1. Registers .. 87
6.2.2. Related work in non von Neumann machines .. 67

8.4.6. Eldiernal memory .. 87
6.2.2.1. Data flow machines .. 67

8.4.7. Timi"l measurements . 88
6.2.2.2. Reduction Machines .. 68

8.4.8. Matehinl computation rates . 88
6.2.2.3. Systolic machines . 68

8.4.9. Types and type senerators .. 88

x xi

8.4.10. MakinS the desisn debusab1e and teslable

8.5. Conclu~ion

A. Flow Analysis Technique

A.l. Introduction to flow analy~i~

A.2. A description 01 the technique
A.2.1. Introduction

A.2.2. Control flow and data flow: differences and ~imilarities

A.2.3. The baslc idea
A.2.4. Primitives
A.2.5. Power 01 the mechod

A.3. Example

A.4. Conclu~ion

B. library format

B.l. Introduction

B.2. Generic definilion~

B.3. Function ~ilic declarations

B.4. Ubrary ~yntax

C. Yet Another Set Language

C.l. Introduction

C.2. Description
C.2. 1. Introduction
C.2.2. Lexical Input
C.2.3. Declaration~ and scope rules
C.2.4. Declarations

C.2.4.1. Set and tuple types
C.2.5. Expres~ion~

C.2.S.1. Operands
C.2.5.2. Operators

C2.5.2.1. logical operators

C2.5.2.2. Relational operators

C2.5.2.3. Arithmetic operators

89

89

91

91

92

92

92

93

93

94

95

95

97

97

97

98

100

102

102

103

103

103

103

104

105

105

105

106

106

106

106

C2.5.2.4. Set operators 107

C.2.6. Statements 107

C.2.6.1. Compound statements 108

C.2.6.2. As~isnment stalements 108

C.2.6.3.Labels 108

C.2.6.4. For statements 108

C.2.6.5. lNhile statements 109

C.2.6.6. II statements 109

C.2.6.7. Quantifiers 110

C.2.7. Miscellaneous 110

C.3. Syntax (BNFI 110

C.4. The sellibrary 114

C.5. EllaIIlp!es 135

D. Digital signal processing Languages 155

0.1. Introduction 155

0.2. A ~ription 01 ClASP 156

0.2.1. Features unique to ClASP 157

0.2.1.1. FiI~ 157

0.2.1.2. Tran~lorm~ 158

0.2.1.3. Special iterative fonn~ 159

0.2.1.4. Functions 160

0.3. Generation 01 machines fromClASP ~ifK:ations 160

0.3.1. Introduction 160

0.3.1.1. Function~ 160

0.3.2. From ~ilications to types 161

0.3.3. Meuic~ 161

0.3.4. Calculation 01 coefficients 161

0.3.5. Architecture and Microcode seneration 162

0.3.5.1. Architecture 162

03.5.1.1. \Yord IeflIlh effects 162

03.5.1.2. Parallel v.s. Serial architectures 163

0.3.5.2. Microcode seneralion 163

0.4. An example 164

0.5. Conclu~ion 165

0.6. Syntax (BNFI 165

0.7. The signal processingfunction library

0.8. Examples

E. Programming Vignettes

E.l. Introduction

E.2.Global name space problems

E.3. Fightil18 with the Usp implementation

E.4. Reflections on USi"l Usp

E.5.A tale of two systems

E.6.The implementation of critics

E.7. Debu88ing the library

E.8. SpecifICation of declarations

E.9. Hairy data structures

xii

169

189

236

236 Table of tables
236

236

237

3.2. Constraint propasationexample: Terminals selected first .. 36

238 3.3. Constraint propaption example: Nontenninalsselected fint . 36

6.2. Microcode fields forsamplepropam and library . 73

239

240

240

240

xiii

Table of figures

1.1 Sample YASL program.
1.2. Dalia path section for the sample YASL program
1.3. Schematic 01 the serial solutionfor the wnpIe YASL program

1.4. Sample ClASP progriIIJI

1.4. CMU DA Syslem block diasram
2.1. OIIerall syslem orpnization

2.2. Dalia flow lVaph for example program
2.3. Control flow lVaph 01 sample program
2.4. Required dalia flow subsraphs for wnpIe program

2.5. Matched dala flow lVaph 01 wnpIe program
2.6. Sample library modules
2.7. Control section for sample program
3.1. Dalia flow substaph
4.1. Dalia flowsubgraph 01 the parallel bit vector module
4.2. Dalia flow subsraphs 0I1he binary tree module
4.3. Match 01 thedala flow lVaph and binary tree
5.1. Search tree of ~mpIe program with wnpIe library
5.2. Graph 01 nodeseJePallded bY' Iewl
6.1. Generic control section
8.1. Detailed block dialViIIJI 01 syslem orpnlzation
D.l. Touch tone decoderdala flowlVaph
E.l. Hairy dala !ltluctUres

.DepM not fIom .- fMIh ,""icll f_ INsusilJ*'rou·

Chapter 1

Introduction

3

4

5
 1. Introduction
7

10 Desisnill8 any larae scale dililial syslem in any tl!chnolosv is a WfY hardand time con­

19

22 sumins task. With semiconductor circuit density increasins, the desisn 01 laraer and more

22

complex systems and circuilS will become nearly impotslble. As an example, a modem 16

26

26
 bit microprosrammed microprocessor such as the Motorola MC68000 took 100 man (penon)

28

30 months to desisn (FrS8l1. This excludes the time requiled to layout the circuit.

36

45
 1. Coils of the work
49

49
 The overall 8081 01 this work is the creation 01 a "silicon compiler". A silicon compiler

58

59 is many thinp to many people. ticJwewr, the idea expressed here is that a user unk­

69

nowledseable in the techniq&M:s 01 dilital and VLSI desisn should be able to create a special
 82

165
 purpose chip that runs the user's program. SpecifICally, the work R!pOffed here describes a

240

system that compiles progrillll5 written in a Very Hi'" Level Lan.,. into a description 01

module interconnections. The modules are chosen from a library that was liven to the system

bY' the user. These modules ha~ been desisned USinl ~·Iewl desian tools.

To accomplish the 8081 01 !his reseM:h, the Syslem described in the forthcominl

chapters uses several techniques deIIeIoped for use in ArtifICial Intellisence (commonly writ-

xiv

3 2

ten "A.I."). These techniques are necessary to overcome the complexity of designing large cir­

cuits like those found in todays microprocessors.

3.	 What this work reports

This thesis reports on the design and implementation of a VlSI compiler for a Very High

level languaae. Data flow analysis is used to derive properties of variables. These "proper_

ties" are used to "preselect" the set of possible implementations. The compiler uses heuristic

ssrch to choose from competil18 implementations for an abstract data type. Type propap­

tion is used to eliminate incompatible combinations, l.e., selections with conflicting

input/output properties. Finallv, if problems arise, then special design operators called "cri­

tics" could be called to try and resolve the design problems. (The implemented system did

not havea full implementation of the critics). Thefinal output from the compiler is a net list

of module interconnections as well as a puts list and a Iistil18 of the microcode fields for the

machine. Thecompiler assumes the existence of an auromatic placement and routil18 system

such as lTX IPOS77I or PI IRIv82I. The output from this subsystem should be suitable for

direct implementation on silicon.

4. AneumpIe 01 system operation

As a demonstration of the capiblllties of the syslIem(called Slu, short for "Silicon"), con­

sider the foIlowins Jl'08I".irn:

proaru tranaitiveclosure

set of !Jet of inte,er : related, _lyRelated, found;

set of inte,er : x,y;

set with size 0 of intecer : phi;

related :. phi;

newlyRelated :. base;

while (newlyRelated <> phi) do

becin

found :. phi;

foran x in newlyRelated do

foran y in x do

found :. fOWld with y;
related :. related with newlyRelated;
newlyRelated :. fOWld - related

end

end.

Figure 1.1 Sample VASl Jl'08I"am

This prOIJ'am is a slightlv reworked example from low's thesis Ilow74) (pp. 14) written

in the langua&e "VASl" (Appendix O. Now assume the input library contains descriptions of

sets implemented both as parallel arld serial registerl. A set library thatcontains these defini­

tions can be found at the end of Appendix C. A full description of of the library format can

be found in Appendix B. The full workings of the demonstration system are left for the subse­

quent chapters - in particular each chapter explains the functionil18 of one part of the SIu sys.­

tem.

Theoutput of Sill is (1) a "parts" list (a list of modules) (2) a set of module interconnec­

tion graphs expressed as a net lists (3) a Iistil18 of the control store. SChematicallv, the output

would look like the graph in fisure 1.2.

One of the solutions given in Appendix C (VASl) is illustrated in figure 1.3. Note that

the clock wires havebeen omitted.

Slu is both table driven and -JanauaIe Indepet"",. As a demonstration of this, a very

high level signal processil18 1.1"" called ClASP(discussed in Appendix D) was designed

and implemented in SIll.

5 4

:onlrol_
!fl.... - 4 bu. (\6)
,idIIl - 18 bits

BillifYTreeOfInteaers ~It----.n-S

~'I-..
Figure 1.2 Dau path section for the sample YASl prosram

lumpen~ _ -3
o

3

2

3

conwl

A

Ij~

:jn"..~

Figure 1.3 Schematic of the serial solution for the sample YASL prosram

7 6

The example shown below in figure 1.4 implements a well known touch-tone receiver:

lIIOdule TouchToneDecoder

__ The now classic touch tone decoder, as done originally in 1963
__ ~ a group in Bell, then done aaain in 1968 by Jackson, et al
-- and done again ~ L¥on.

declare tuple of integer : lowerBand, upperBand;

declare tuple of integer : lowerBandCenterFrequencies;

declare tuple of integer : upperBandCenterFrequencies;

declare tuple of integer : detection;

declare integer result; -- output fra. hu. filter

-- (and iteration variable)
declare integer : bandLi.it; -- bandpass (and lowpass) band li.it
declare integer : input; -- input fra. the A/D
declare integer : output; -- output fra. the .ooule
declare filter fra. 180 to INFINITY: noHua; -- Line hu. filter

lowerBandcenterFrequencies :. 697, 770, 852, 941 I ;

upperBandcenterFrequencies :. 1209, 1336, 1447, 1663 I ;

result :. n~(input);

lowerBand :. filter result fra. DC to 1070 : lowerGroupFilter;

upperBand :. filter result fra. 1070 to INFINITY: upperGroupFilter;

detection :. phi;

foreach centerFrequency in lowerBandcenterFrequencies do

detection :. detection plus

filter HalfWaveRectifier(

filter lowerBand

fra. centerFrequency-bandLi.it
to centerFrequency+bandLi.it

with Q of 15 and
with stopbmJd attenuation of 16 db down
: l~ra.ndPass)

fra. DC
to centerFrequency+bandLi.it

detectLowGroup;

foreach centerFrequency in upperBandCenterFrequencies do

detection :. detection plus

filter HalfWaveRectifier(

filter upperBand

fra. centerFrequency-bandLi.it
to centerFrequency+bandLi.it

with Q of 15 and
with stopband attenuation of 16 db down
: upperBandPass)

fra.	 DC

to centerFrequency+bandLi.it
: detectUpperGroup;

foreach result in detection do

output :. LeYeIDetect(result)

erxl.

Filure 1.4 Sample ClASP prosram

The detailed output from Sill for the sample YASl prosram (filure 1.1) can be found in

Appendix C. The simplified output (net list) for one desisn can be found at the end at

chapter 2. The output for the sample ClASP prosram (fllure 1.4) can be found in Appendix

D.

Note that throughout this thesis, references to the -sample prosram- refer to the sample

YASl prosram, not the ClASP prosram.

5.	 Relevant'"

The next three sections present an CM!fView atwork that Is relevant to the thesis work.

The fint section Ioob at the present state at the art in desisn automation and claims the

present desisn tools are not suffICiently powerful to soIYe the problems mentioned In the fint

section. The next section describes the use at A. I. based tlechniques in circuit desisn. The

last section looks at the state atVery HiBh leYeI LansuaBes.

5.1.	 DeIip Automation

The computer aided desisn (CAD) at intetp'ated circuits has been an active area at

research for a lonl time. Therefore, the body at literature on CAD is Ions and extensive.

Any attempt to comprehensively survey the field here would be inappropriate. However, the

interested reader should see Newton's recent survey INew811 for a review at the current

state-of-the-art in CAD for VlSI. The next two sections briefly review two aspects at CAD:

sraphic editors and layout lanluases.

9 8

5.1.1.	 Gr.ic Editors

Graphic editors were the first form 0#design automation to be used in the semiconduc­

tor industry. Rather than being laid out on paper, designs are laid out on a Cathode Ray

Tube (CRT) using an editor which can eventually produce output suitable for fabrication (such

as a maskdescription).

It has been observed that designs repeatedly use smaller designs. The latter designs are

called "cells". Several sraphic editors have been created that allow the user to define and

call cells within the editor. Examples 0# these editors are ICARUS (FaR781, Daedalus

(BMS8l1 and CAESAR 10us811.

Like programmers, circuits designers control design complexity by exploiting hierarchy.

This hierarchy can be expressed by a form 0# "macro expression" that occurs when cells are

"called" within Olher cells. Self reference is not permitted as the sraphic editors mentioned

above lack the ability to stop recursion. However, as sophisticated as today's sraphic editors

are, the time to layout an entire circuit is still overwhelming. In part, this is due to the lim­

ited size 0# the CRT screen. Only a certain number 0#devices can be displayed before the

screen becomes a blur 0#color. The lVaphic editors mentioned above set around this ~

lem by using "windowing" to present only a small part 0# the overall design. Unfortunab!ly,

while good for design in the small, windowing il terrible for design in the large. Another

problem with sraphic editors is the lack 0#signal typing. Without typing, connecting the out­

put of one cell to the output 0# another cell (or connecting two signals that don't share a

compatible format) is quib! easy.

5.1.2.	 uyout Wapqes

Work has also been done in using non-graphical languages to describe circuit layout.

DPl (BatSl JlBaH801 is a simple Lisp based command language that has low level primitives

that can be used to form complex commands. For eQlTlple, "(from (pt xl y1)) lrun-Iayer

'poly) (run-width 2) (tox deltaX) (toy deltaY)" will creab! a poIysilicon line 0#width 2 lambda

that runs from (xl, yl) to ((xl +deltaX), (yl +deltaY»). Theseprimitives are used by Lisp func­

tions writb!n by the user to senerab! cells. Besides rudimentary layout functions DPl also

provides primitives for ib!ration and PlA construction. One purpose 0# DPL is to provide

flexibility at the cost 0# sophistication. In fact, DPl is really a meta-Ianguaae to be used in

construeting newdesign systems.

Shrobe's Data Path Generator (DPG) (Shr821 an example 0#a system built using DPL. II

is used to construet the data path sections 0# special purpose machines. The cells used by

the DPG are designed with the sraphic editor Daedalus. The cells are also described with a

declarative language for input to the DPG. The data path section generated by the DPG has

a fixed architecture with drivers at the "top" and a global bus that connects the registers and

operators together. The registers and operators have a fixed vertical pitch but are stretched at

predefined stretch points to attached to other fixed wires. Shrobe points out that the DPG is

organized around a particular design style that makes it inflexible when the prob/em domain

is changed.

5.2.	 Silicon compilers

As mentioned in the introduction, the phrase "silicon compiler" has come to mean

many different things - from compiling programmable logic arrays (PLAs) to generation 0#

machines from languages. The next sections look at some systems that have been called "sil­

icon compilers".

5.2.1.	 Bristle Blocks mel Side..

Bristle Blocks Uoh791 is a primitive silicon compiler. It .Ilu·lll~ " 'Ik'lific microcode

instruction word and a list 0# elements in the data IMh (l.,lIl'l.l a "corr-" hy)"h,lIlnwn' and

generates a two bus machine thaI inlplen1f'nt~ th.. mu ruPlOlIrdnl. There are three input sec­

tions to Bristle Blocks: the d,·I.llh·,j 1111."" ,><.Ie :.pecification, tht' "~t ul I>u,," and bus

11 10

connections and the elements of the "core" (i.e., the cells). The library cells of Bristle Blocks

have a fixed layout and are described procedurally, like OPL cells.

Siclops IHSC82) is a ~ implementation of Bristle Blocks. It was designed to over­

come some of the limitations of Bristle Blocks. In particular, it allows a flexible floorplan as

well as automatic routing of signals, power and ground.

5.2.2. MacPltts

MacPitts ISSC82) accepb iI register trilnsfer language with parallel constructs and gen­

erates a machine down to the level of layout. However, the architecture of the underlying

ITl;IChine seeps into the lilOpge specification. For eumple, all registers are read before they

are written, which allows for some seeminsly confusil18 constructions. For example, (par

(setq a b) (M!tq b a)) interchanges a and b because both iI and b ilre read out before they are

written. Since registers are read before beil18 written, this ilSSUre5 that the registers do not

share buteS. MacPitts prantees this by copyil1l datil paths until there ilre no conflicts.

Operiltions that are to be performed In parallel must be marked explicitly by usil18 the "par"

constructor as shown move. MacPitts alto uses a primitive control trilnsfer operations (goto)

to effect state transfer. The cells ~ by MacPitts (called "orpnelles" by MacPitts designers)

are defined usinl Lisp functions to be bit slices. The "orpnelles" generated by these functions

must beable to stretch (like Shrobe's DPG celli) to connect to the signal and power buses.

5.2.3.	 eMU Desipl Automation System

The CMU Desiln Automation System IPTS79) lOPS) is a long term project with the

eventual goal of autom4ltinl dilital desi&". The CMU OA System accep«s a machine descrip­

tion written in ISP IBar78) IBar81\, a particularly low level register transfer lanluage.

Althouah ISP is both flexible and generill, its level of description is very low. If the designer

does not have an architecture in mind, the system will not create an architectu

DaY base clescriooon

Datil base cIesc,i,

Filure 1.4 CMU OA system block diagram

First, the ISP description is parsed. The Value Trace analyzer runs over the parse tree

generating the Value Trace Iraph. The Value Trace araph can be optimized, much like a

proIfam to get rid of inefficient operations. Next, a decision is made"by the user" about the

"desiln style" to be used. A "desi&" style" is a class of machine orpnizations, such as pipe-

Datil Base

13 12

lined, decentralized arithmetic and 50 forth. The design style allocator creates data paths

from the Value Trace. The module binder assigns implementations from the librdry 10 th..

various modules. The final step is the generation 01 the control section 01 the machine.

The CMU DA system differs from SlU in many ways. First, the input language 01 CMU

system is ISP, a low level register to register transfer language. ISP comes close to dictating

the intemal architecture 01 the machine completely by specifying the connection 01 internal

registers.

The value trace 01 the CMU system differs in a significant way from the control and data

flow analysis used in SIll: variables are removed from the ISP, whereas in Sill, the variables

are used to select implementations.

Theoptimization phase 01 the CMU system is similar to the use 01 critics in Sill. How­

ever, some optimizations 01 the CMU system (such as the transformation 01 parallel to serial

designs) are not needed here since the selection phase will choose these designs automati­

cally.

The module binder phase 01 the CMU system has the same goal as the selection phase

01 SIll, i.e., attachln. iPKific matches to the data path 01 the machine.

Likewise, the control allocator is very similar to the control lection synthesizer 01 SIll

except that the COfltrol section synchesizer operaIeI from a control flow graph and not from a

"procedural descriptloll" as in the CMU DA syseem. Thecontrol section synthesizer reflects

the "microcode stYle" 01 the CMU DA sysllemS.

5.2.4.	 MIMOLA

TheMIMOLA design system (Zim79)(Zim801 is a system with similar soals to Sill, but at

a much lower level. The MIMOLA system accepts a macro lanauage with low level con­

struet5 and generates a register transfer machine that implements the program. The next step

in synthesis (the Automated Logic Design System) takes the register transfer machine and

generates a gate level description by doing macro expansion and tree walking. The last step

in the design process is the use of the Physical DesIgn System (a subsystem 01 MIMOLA) to

complete the task 01 layout. More recently, the MlMOLA system has been focused on the

VLSI domain. The system is now called the "MIMOLA Software System" (MSS) (Zim811 The

MSS user can put specific limits on resource usage. MSS uses constraints to control resource

allocation (See Chapter 3). Perhaps the biggest difference blIlween MSS and SIll is the view

01 the user. MSS is a "full partner" in the design process; in SIU, the designer supplies a pr0­

gram and a few assertions and the rest is aUlOmatic.

5.2.5.	 ARSENIC'" Xi

The LISA language (part 01 the ARSENIC system (Gaj82/1 and Xi (Joh) are similar sys­

tems. They are both high level languages with similar ipPrOaChes to compilation. Both

languages have fairly primitive operators (such as "shift" lind "rotate") that are expressed

directly 111 tbe generated hardware. ARSENIC is a top down design system 01 which LISA is

only one part. Like SIll, it performs timing analysis on the generated hardware to check that

the chip meets the design constraints.

5.3.	 A.I. ~hes to autonYtins circuit desi..

Somework has been done using A.I. principles and techniques in automating construc­

tion 01 circuits. McDermott's (McD77) thesis system, "DESI", was able to design simple cir­

cuits from a p1all. McDermott's system used constraints between modules to guarantee that

the modules would work together. A similar technique was used by a group at RutlJerS

(MSS8l1 (KeS821 to analyze behavior 01 digital circuits. deKleer's thesis proposal (deKI

worked on a theory 01 planning that accounted for some 01 the defICiencies 01 McDermott's

thesis. Specifically, these deficiencies included the lack 01 knowledge 01 partial plans and

the ability to recognize circuit fragments as plans. Brown's thesis IBro761 is closely related to

McDermott's but deals with the problems 01 debuUing circuits, not generation.

15 14

These works will be discussed further in the chapter on constraints. However, the plan­

ning view d design is quite different from the compiling approach used in Sill. In planning,

the user provides the system with a pi and constructs plans to achieve that goal. A

hierarchical planner divides the main pi into subgoals (recursively) until the subgoals are

achievable. (See Nilsson INil801 for a review d planning). Generating a plan from a high

level goal is an extremely diffICult task. First, the planner should have a data base d avail­

able plans. The plans must have preconditions, effects (and possibly constraints). Second,

the planning mechanism should be mIe to carry many plans in parallel. In compiling, the

user provides a program (a specific solution to a problem), not a plan, and this program is

used to generate the output code that will produce the solution. SIll outputs a description d

the machine, not code (except for the microcode d the machinell.

Compilers accept ptOfIIams i.e., a specifIC solution to a problem. A planner accepts a

high IeIIel floal.

5.4.	 Very Hilhlewl

In 1973, Ear\ey IEar731 identified three criteria for the design d (very) high level ~

lJI'amming languages. Theywere

(1) The ability to write a program in a clear and concise manner

(2) The ability to ignore the implementation Iuues and concentrate on the semantics
and correctness d the algorithm

(3) Postpone design decisions on seeminaJy unrelatll!d portions d the program until
needed.

Of these three points, the second point is d particular interest. This is because the user

d a high level silicon compiler shouldbeable to ignore the details d VLSI implementation.

Past work in Very High Level Languages has been principally done in languages with

abstract types such as sets, tuples and relations. As stated above, the use d these high level

types intentionally obscures common programming details such as pointer chasing, memory

allocation, structure formation and implementation selection.

SElL (Sch511 IDeS791\Sch751 is perflaps the best known set language. SElL uses sets as

its fundamental data type. It has existential and universal quantifM!l'S as primitive operators as

well as functions over sets. Since its inception, SETL has been studied as a vehicle to explore

automatic selection.

VERS2 IEar731 IEar741 was another Very High Level Language developed by Jay Earley

and students. VERS2 used the notion d "relational accen" rather than the notion d "access

paths" (e.g., pointer references) for data structure access in programs. It shared many features

with sm but had a different syntax and a relational and matchi"l sublanauqe.

SIll uses two very high IeIIellanguaaes; one, called "VASL" is a descendant d VERS2.

It is discussed in Appendix C. The other lanauqe is a slanal processi"l language called

"CLASP". It is discussed further in AppendiX D.

6.	 Orpnization of the IheIis

This thesis besins with the example program shown earlier in figure 1.1. This example

is used throughout the thesis to demonstrate the piItJ d the system. The second chapber is

an overview d the system, what each part does, what it connects to and how the symbiotic

whole works. The third chapter describes the use d constraint (type) propaption in reduci"l

the search space. The next chapter incroduces heuristic search as a method for choosing

implementations, and includes descriptions d the metrics and module bindi"l techniques.

Chapter 5 presents the implicit machine model and how to constroct microcode for it.

Chapter 6 discusses the implicit machine architecture as well as how to generate the control

store. Chapter 7 introduces the use d critics as a mechanism to resolve constraint failure.

Each possible critic is also described alons with the circumstances that could brinl about its

use. The eighth and final chapter presents the results d the work: what worked and what

didn't as well as the orpnization d Sill. Appendices are included that live extremely

16

·Vou will W<e • cl>MKe on someIhin, in /he nNI f_"detailed annotated traces atStll in operation.

Chapter 2

Overview of Sill

1.	 Introduction

In this chapter, Sill is surveyed. The chapter is self sunding, i.e., can be read without

reading the remaining parts at the thesis. The previous chapter introduced the problem at

VLSI compilation and past work. The reader is encourased to read it for further bacqround

on the problem.

Section 2.1 briefly discusses the various components at Stu with reprd to their

inpulloutput behaviOl'. The detailed descriptions at the innennost workings at each com­

ponent are described in the subsequent chapters.

The input to the system is discussed in leClion 2.2. SIll was designed to be "language

independent", i.e., the internals at SIll are not dependent on the semantic;s at the input

language. The exact syntax and semantics at the input languaaes that were used are left to

Appendices C and D. Next, the concerns that led to the inclusion at particular information

are discussed. The next section discusses how heuristic search and type matching work

together as a selection mechanism. Afterfinding selections. the next step is the generation at

the control store and the control machine. Global constraints and critics are discussed next

as a mechanism of design modification in the event at selection failure. Finally. the part at

Sill that actually lJeOI!rates the output is presented.

17

18	 19

2.	 The modules and their input/output beMvior The output from the parser is a pane tree. It is used by several modules including the

type declaration module (001 shown in the figure) and the flow analysis modules. The typeThe overall organization 01the compiler is shown below in the figure 2.1:

declaration module just wde<:orates" the tree with various type declarations from the declara­

tion statements. Thecontrol flow procedure nowtakes the pane tree and calls upon the data

Gr; flow procedure to analyze subtrees 01 the pane tree at appropriate points. The output 01 the

control flow and data flow analysis routines are the control flow and data flow graphs.

It is now possible to apply Yarious graph transformations (for example, algebraic

o.ta flow transformations) at this stase. Cattell's thesis I<AV81 includes a catalo8 01 various possible
equalionI

transformations (see page 521 that would be useful in a system that is in production use.

However, the implemented 5IlJ system did 001 perform any transfonnations on the data flow

graph. (Note that unimplemented sections are illustrated uslns dottedboxedl.

Thenext step is to match the data path (as described by the data flow graph) apinst the

various implementations described in the library. The InItehins procedure uses the type

information to cut down the number 01 possible irnplernent;atio durins the search. The

matcher establishes a correspondence between the matches (called "instances") and the nodes

in the data flow graph.

lllnry

Haying built up the correspondence between instances and nodes in the data flowt- : Critic

: Gallery

graph, the next step is to "bind"' the parameten in the library description to the properties in

the data flow node. This "fully instantiateswthe node by specifylns parameters like size and

width. Thenext step is to choose the Imp/ementations.

The selection 01 implementations (instances) begins by sortins the nodes 01 the data

flow graph by the number 01 implementations that matched that node. This is because the

nodes with re-r choices should be chosen first as they will constrain the choices later on.

After sorting the implementations, search begins. As the search is taking place, each choice

is "weighedw to guarantee that the choices will be within the design constraints specified by
Figure 2.1 Overall system organization

20	 21

the system user. Should a choice violate one 01 these constraints, then a design "critic"

would be called in an attempt to resolve the conflict. (The implemented SIll system did not

have full implementation 01 critics). If resolution is not possible, the choice is tossed out.

Also, as each choice is made, the signal types 01the implementations are checked to make

sure that they agree. If they don't, then the choice is thrown out. The search process ends

when all nodes have been processed. The next staae seneraleS the control section.

The seneration 01 the control section is relatively straight-forward. It tJesins by gather­

ing all the control fields 01 the nodes in the control flow lVaph. Next, a control section is

created from the library and the fields 01 the control section are filled. The final step is the

seneration 01 a multiplexer that Jives the jump signal to the control unit. (The multiplexer

serves to gate the appropriate lest signal to the pnlIram counter).

The final step in the compiler is to senerate the net list. This is done by connectinB

each module, one at il time, to the moduleswhich its signals are connected to.

The rest 01 this chapcer is devoted to taking the example from the previous chapter and

"running" it through the system.

3.	 InfOl'lNltion ptheri..

A "conventional" compiler, t.e., one that compiles a source text into a machine

language needs to know about data types, dataflow and control flow as well as various facts

about the output II1<IChine language and machine model.

SILl requires more information than a conventional compiler. Besides the abovemen­

tioned data, a VLSI compiler needs information on the library 01 implementation choices as

well as the implementation constraints 01each choice.

In the next three sections, the front end 01 the compiler is examined lO show what

types 01information are needed and gathered.

3.1.	 D... flow iINIysis

Data flow analysis is an old idea dating back to the earlier days 01compilers. Recently,

data flow analysis has benefited from a rigorous devefopment which can be found in Hecht

(Hec77) or Kennedy (Ken81). Data flow analysis derives a directed lVaph called (appropri­

ately) a data flow graph. Each node in the graph cOl'l'l!5pOnds to a variable or operator in the

input pnlIram. An arc connects two nodes if datacan be "transmilled" from the source node

to the sink node. For example, take the example program shown in figure 1.1. Its data flow

lVaph is shown below.

Figure 2.2 Data flow lVaph for example pnlIram

22	 23

Fortunately for system designers and implementors, data flow graphs are easily con­

structed at parse time. Rosen [Ros77) and Kennedy [Ken81) give procedures that can be exe­

cuted as semantic routines during parsing, i.e., as a form 01 syntax directed translation.

The data flow techniques used by SIU will not be described here because they are not

critical to the operation 01 the system. The data flow technique is a bit unusual because the

system is "language independent" and therefore the analysis is table driven. The interested

reader can find all the details 01 the method in Appendix A.

3.2.	 Control flow analysis

Control flow analysis is closely related to data flow analysis. It describes the path 01 the

prosram counter as the prosram is executed. Like the data flow graph, it is a directed graph

where each node represents a statement and each art: represents the transfer 01 control from

the sourt:e to the sink.

Like data flow graphs, control flow .,aphs are easily formed at parse time. Like the

data flow method, the control flow analysis procedure used by Sill is lal18uage indepelldellt

and tabledriven. The details 01 the methodcan also be found in Appendix A.

Allen IA1I70) has an introduction to control flow analysis. A more modem introduction

can be found in Aha and Ullman [AhUn).

For the example prosram, the control flow .,aph is shown on the next page.

3.3.	 Other forms of ~

There are other analytical techniques that are 01 use in gathering information about a

program. For example, the range 01 an array or the maximum size 01 a set will be extremely

useful during the selection process because these measurements are used to generate the

appropriate sized elements. The use 01 this information will be discussed in greater detail in

the section on binding (see Chapter 4).

FilPft 2.3 ConlIul flow paph 01-,,* IJlOlIrMl

25 24

3.3.1. Property Extraction

Besides control and data flow analysis, property extraction is another useful compile­

time technique.

3.3.1.1.	 Type determination

Tenenbaum (Ten74) and Kaplan and Ullman (KaU80) both present algorithms for deter­

mining type in languages with runtime typing. Wesbreit (Weg75) presents an algorithm that

computes various program "properties" including the type 01 variables (in a language with

runtime types) and data bounds. Type information is 01 immediate use to a VlSI compiler

that separates the implementations by type as this compiler does. Type propasation is a

needed component in the system because the interior nodes 01 the data flow graph (the

operators) do not have types declared explicitly. A modification 01 Wegbreit's procedure

could be used to derive the types 01 the interior nodes in the data flow graph. This will

become clearer in the section on binding in Chapter l.

3.3.1.2.	 0Iher properties

Suzuki and Ishihata (Suln) consaructed a special purpose theorem prover to check

array bounds 01 Pascal-like programs. A modiflCalion 01 their technique could be useful in

establishing the size 01 arrays or sets at compile time.

4.	 Milchine Gener~tion

Every compiler has a machine model. Most oIten, this model is embedded in the code

generator. For example, the code generator for the VAX (Str78) should generate code that

takes advantage 01 the machine's multiple registers, varying data formats and addressing

modes. The compiler diK:ussed in this thesis must take a s1iptly different tack; it is generat­

ing machines, not instructions. Therefore, the notion 01 generating code for a machine

becomes one 01 generating a machine for an algorithm.

The step taken in this thesis is to generate a so called "Harvard Machine" for the input

algorithm by transforming the data flow graph into a multi-register machine and the control

flow graph into a control section that controls the ~ster machine.

As an example, take the allJOrithm presented in section 1 01 this chapter. The derived

dataflow graph for this was shown in figure 2.2 above. Now, if each variable (node) in the

graph becomes a register or operator and each arc becomes a data path, then the graph

becomes a simple machine as was shown earlier.

The next phase is the selection 01 the implernenutions for the variables and the opera­

tors. A "conventional" compiler has a machine model and a fixed set 01 resources. The pr0b­

lem there is to generate code for the machine and use as little 01 the available resources as

possible. The problem faced here is to generate a machine that correctly and efficiently

implements the input program.

An architecture is an implementation 01 a computational model. So, after choosing a

model, the problem becomes one 01 generating an architecture. This will be diK:ussed in the

context 01 implementation selection.

At first glance such a machine would be unrealizably large. The purpose 01 the design

critics diK:ussed in Chapter 7 is to compress the machine by chansing the underlying archi­

tecture. For example, one change mipt be to bus several data paths together.

s.	 Implemenution IeIection

5.1.	 ~tchina

Each library implementation description has a set 01 data flow subBraphs. These

represent the data flow graph computed by the module for each combination 01 control sig­

nals. Matching must be done between the data flow subBraphs 01 the library implementations

and the data flow graph 01 the input program. The matching technique will be described in

26	 27

decail in Chapter 4. The result 01 the matching procedure is a pairing between the nodes in

the data flow graph 01 the program and the nodes in the description 01 the implementation.

Consider the current example. In order to match thedata flow graph of the program (shown

earlier in figure 2.2), the subgraphs shown In the figure below must be described in the

library.

Data flow subgraphs

-

1 2 3 4 5 6

March number

Figure 2.4 Required data flow subpaptK for sample PfOlII'am

After matching the subgraphs 01 the library qainst the graph 01 the input PfOlII'am, the

match that results is shown on the next paae in figure 2.5.

Note that thematching procedure marches bothnodes and types that are -bound- to the

nodes by type analysis. This has the effect01 partitioning the library by type.

After matching PfOlII'am nodes with implementation nodes. the next step is to choose

the appropriate matches. This is commonly called -implementation selection-.

Figure 2.5 Matched data flow graph 01 sample PfOlII'am

5.2.	 Selection

The problem 01 selection is one 01 choosing an implementation from a list 01 possible

implementations. In SIll, a selection chooses a concrete implernentation 01 an abstract data

type. For example, a hash table is a concrete implementation 01 a set. Of course, each selec­

tion carries with it various costs, Including time, area and power. The selection process

29 28

described in chapter 5 uses these par~meters to guide the implementation se~rch.

Previous work in implementation selection hu centered ~round the use 01 three tech­

niques: heuristic search (low7411ROYI, selection rules (Kan821 ~nd progr~m tr~nsformation

(P~i831. In heuristic search (the approach taken by this thesis), the selection is done using ~

tree search with ~ heuristic ev~luation function. The selection rule systems use production

rules to do selection based on the preconditions 01 the rules. The program tr~nsfol'lNtion

technique continually tr~nsfonns the input program until the program can be compiled using

the implementalions in the library.

The se~h procedure talles as input a library 01 possible implementations, a machine

seneraled from the data flow gr~ph, a type interaction table ~nd ~ list 01 global constraints.

A heuristic search technique is used to guide the selection process.

The first step is the act 01 binding. Binding is the step where program properties ~re

used to derive implementation properties. For example, set size becomes the number 01 bits

in a bit vector implementation 01 a set and so forth. Binding is accomplished through the use

01 interpretation routines that are specifted as part 01 the library.

Next, as each selection is made, input/output types ~re checked between the input and

output ports 01 the chosen implementation. If it is impossible for the siBNls to match, the

selection will be thrown out. This process continua until either all the nodes in the machine

have implementations or no selection is po55ible. In the latter case, a design procedure,

called a ·critic·, could be called in an attempt to resolve the conflict.

As an ellample, consider the possible implementations for the variilbles and operators in

the data flow graph 01 figure 2.2. Figure 2.& on the next page illustrates the ·schematics·

that are available for set implementations in the YASllibrary.

It is possible for the selectionaJ(IOrithm to terminate with more than one choice and it is

~Jso possible that _ 01 the selections will be optimal for the problem.

I>
tData

Seri~1

BitVectorf-i I

~

BitVector

inoutData BinaryTree ~ oulPulData
Oflnlegers n

HashTable
)

Oflnlegers

inputData
7~

clock
linkedlist

operation '~ OfInlegers
/~memory I / memory

1"­' ­
Figure 2.& Sample library modules

6.	 Generation

Aher selecting implementations for the nodes in the machine graph, the next step is the

generation of the control section of the machine. It will be shown later that it is necessary to

deldy control section generation until aher the selection 01 implementations has been made.

Since the generated machine is assumed to be synchronous, the control of the machine is

31 30

Illdd., by 01 microcoded store. The process of control store generation begins with analysis of

the cuntrol flow graph and the data now graph bound with implementations. The process of

generating the microprogram proceeds by examining each nodeof the data flow graph for the

control field of the implementation module. The fields are collected to form the micropro­

gram word,

Next, the control flow graph is walked from head to tail generating assignments to each

field in the microprogram word. The last step in generation is to create the control store and

generate a multiplexer for the jump signals. The conbol section for the sample program (for

the all parallel implementation) is as follows:

Microcode Memory

Control fields for selections
jump
conditions jump ne~

number possible
x iterator end

newlyRelated
iterator end

Mtiress

to data path

Microcode mt!motyMtiress

Figure 2.7 Control section for sample program

The final step is the convenion of the machine graph to a "net list" (a connection list)

suitable for a placement and routing system. The net list of the example program for the

binary tree version is shown below:

5elOfsetOflnt"lr"rSUbtraction: outputDllta/3 to PIlrall"l8etof8etoflrlt"lr"r: inputDllta/4
Parall"lBI tvect.er-r outputDllta/3 to PIlra11"18etOf8etoflntepr : lnputDllta/4

Parall"l8etOfsetoflnt"lr"r: outputDllta/4 to 8etof8etOflntaaersubtractlon: inputA/3
PIlrall"lsetofsetoflnt"lr"r: outputDllta/4 to PIlrallel8etof8etoflnt"lrer: lnputDllta/4
Parall"lsetOfsetoflntelrer: outputDllta/. to PIlnllelsetOf8etoflntelrer: inputDllta/4
"lIr"'lelsetofsetoflnt"lr"r: outputDllta/4 to 8etOf8etOflnt.....rsubtraction: lnputB/3

33

"/I y"" "'i,h ro. yoo will h~.., ." OfIPO'lUnlly"

Chapter 3

Constraints

1. Introduction

The word "constraints" is now a catchword for several different problem solving

methods in Artificial Intelligence. These techniques will be discussed further in the next three

sections. The first section introduces constraints and how they can be used in problem solv­

ing systems. The next section covers the use 01 constraints in a silicon compiler. The last

section discusses relevant past work in constraint based systems.

2. Introduction to constr~n" ... problem mins

2.1.	 Represenution

A conslrdinl can be broadly defined as a re5I1iction that specifies the range 01values 01

variables in an equalion. It is often easiest to express these restrictions as equations. As an

example, consider the analog circuit domain 01Stallman and Sussman ISuS7S). A constraint

in their system might take the form 01an electrical equation involving other nodes in the cir­

cuit being analyzed. In the simplest form, however, constraints can be represented as rela­

tions. An example of this is Waltz' thesis system IWaI7S), where the constraints are restric­

tions on the labelings 01 arcs. Because 01 the differing complexities of the representations,

different problem solving techniques are used to find solutions 10 tbe conslraints. These

32

It-"lhniques will be covered in the section on relevant work.

2.2. Use in problem soIVilll

Given a constraint, the next question is: how does Sill compute the values 01 the vari­

ables in the constraint equation (or relation). Stallman and Sussman use a combination 01

~ymbohc algebraic manipulation and "propasation" to solve the circuit equations. Here,

"propagation" refers to using rules to assign values to the nodes in the circuit. When the sys­

tem uses relations, the propagation step is easier. A search technique is used to choose pes­

sible values for the variables. Then, the applicable constraint relations are evaluated. If the

constraints are satisfied, then the variables are instanllated, otherwise, the variables are

"thrown out".

3. Use of constr~nts in VLSI_III

3.1. Introduction

Constraints are present at all levels 01 VLSI design. At the bottom level, constraints

called design rules specify the minimum spacing 01 lines. The next level up is the transistor

level; e.g, transistor I. must have a ratio 012:1 with transistor~. The next level up are cells.

Typical inter-<:ell constraints are 01 the form "port q' doesn't have supelbuffers, therefore il

must be close to its sink". Cells make up modules and module constraints specify properties.

For example, "module M, port inputA takes parallel, two's cornplernent integers". At the top

level, modules are connected together to form systems. The constraints at the system level

are global performance constraints.

In Sill, lhe Iowesf level 01 representation is the module layer. The inter-module con­

straints have a local nature; they exist between ports 01 the modules that are connected by .

data paths. These will be called "port constraints".

34

There are also more global constraints. These constraints express the high level perfor­

mance and resource bounds. These will be called -specification constraints".

Finally, there are constraints that are specific to modules being matched. If these con­

straints are satisfied durillB matching, then the module is matched, otherwise the module is

not matched. These constraints will be called -matching constraints-.

3.2.	 Portconstrain..

There are two ideas behind the use of port constraints. The first purpose of the port

constraints is to ensure that other modules connectl!d to the port will be able to -talk- to the

module (i.e., the ports share common typins). Note that every module in the Iibra'Y has

semantics (or properties) associllb!d with e«h port. If these semantics are matched, then the

connection is valid.

The second purpose of port constraints is to establish data paths between modules. This

is because when a module description is liven to the system, there are no indications about

which ports of which modules can connect to a particular port. Therefore, one method of

connecting ports of modules is to match the types of the ports.

SpecifICally, consider the use allJI'OII'olm properties in selection. If port constraints are

defined as bina'Y relations 0IIeI' types, then the consIraints can be expressed as the relation

-It"~ t2), where t, and ~ are the types of ports. The actual type matching takes place durinl

selection. Each type of the ports on the .-Iy selected module are traced backward to the

connecting module. If there isn't a selection ret, then the port is deemed acceptable; the

type checking will take place when the other module is selected. If the other module has

been selecb!d, then the type of the port on the other module is compared (using the relation

-type<ompare-) with the type of the port on the newly selected module. If they match, then

theselection is permitted to proceed. Otherwise, the selection is put into the -reject bin",

35

For example, take the case of two nodes n. and n
2

each with a parallel and serial

implementation. Assume that n. and n2 are connected, i.e., there is a data path between

them. During the search phase of selection If ", is selected first then attempts to propagate

the port constraints will fail as n2 is not InstMItIaIed ret. When the search reaches n , then
2

the port types of n l and n are checked since !hey will both be instantiated. 2

Note that matching also involves searchillB - each port of every selection must be

matched against every other port of the connectl!d selections. For example, suppose port A

has types t l and t2 and port B has types t) and t.. Then, type t is checked with type t) and
l

then type t.o likewise, this will happen with the type~. The demonstration lJI'OII'am imple­

ments this by using a depth-first search.

3.2.1. An eumple

Consider the following subgraph of the data flow waph shown in figure 2.2 (the port

names are shown in italics).

Figure 3.1 Data flow subgraph

36	 37

There are two cases to be considered. In the first case, all the terminals (in this case

related, newlyRelated and found) are selected. In the second case, the nonterminals

un the subtlraph this is only -) have been selected first. The two tables below illustrate the

acnons of the propagation algorithm. The notation "check" means that the properties of the

pons will be checked whereas the notation "110 action" means that no action will be taken

since the node on the "other end of the wire" is not instantiated. The first case is when the

terminals are selected first:

from node to node action taken
related:outputData -:inputA no action
newlyRelated:inputData -:input8 no action
found:oulPUtData -:inputB no action
-:inpulA related:outputData check
-:input8 newlyRelated:inputData check
-:outoutData found:outoutData check

Table 3.2 Constraint propagation example: Terminals selected first

Thesecond case is when nonterminals are selected first:

from nodP 10 node action taken
-:inputA related:outputData no action
-:input8 found:outputData no action
-:OUlpUtData newlvRelated:inputData no action
related:outputD.ta -:inpulA check
newlyRelated :inputData -:outputlRta check
found:oulPt.llD.ta -:inputB check

Table 3.3 Constraint propaJiItion example: Nonterminals selected first

3.2.2.	 ConItr•• pretlNplion iIIpilhm

The algorithm for constraint propagation follows:

; propagate-constraints takes a search node and propagates as many

; properties as possible in the ~ta flow graph.

procedure PfOPlIPIe-coIIIIrMlll(search-node) is

; Loop through all the marches attached to the search-node

forall match-node in the match-nodes

of the instances

of the search-node do

; Now search through the waph 01 the marched node Ioo«in,

; for ports.

forall parts of the graph of the match-node do

if the part (of the graph) is a port then
; if the port is declared an INPUT port. then BO
; backward through the graph (to the connectin,
; connectin, OUTPUT port).
if the node is declared in the INPUT section then

foreach connecting-node in
TraverseGraphFromNode<node, BACKWARDS) do

propasate-propet1ies(node, connectins-node)
else
; if theport is declared an OUTPUT port, then BO
; backward through the waph (to the connectin,
; connect in, INPUT port).

if the node is declared in theOUTPUT sectionthen

fore<lCh connecting-node in

TraverseGraphFromNode(node, FORWARDS) do

propagate-properties(node, connectina-node)

end propaaale-constraints

where:

propagate-properties tries to propafJate all the properties 01 the

port-node (which points to the library via its marches)

to the connecting-node.

procedure ~port-node,connecting-node):

; First, make sure that they talk to each otherat the same time.

if the control-node of the march-node of the port-node ­

the control-node of the match-node of the Connectins-node
then

; loop through all the connected marches, makin, SUit' their
; instance is selected.
foreach match-node in march-nodes of connecting-node do

if the instance of the march-node of the connecting-node
is in the instances of the search-node then

PropagatePropertiesFromNodelntoNode(port-node, connected-node);
end propagate-properties.

where:

procedure ~NodeIntoNode(from-node,to-node) is
; This is only concerned with march in, pollS
if the to-node is a port then

if property-compatibiJity(from-node, connected-node) then
AddPropertiesFromNodeToNode(from-node. connected-node)

38	 39

retum success

else

retum failure

end.

and:

; property<ompatibility tests to see if the properties of two data
; flow nodes are ·compatible·. This is done with a simple table lookup.

procedure propefty~tibiIity(frorn-node,to-node) is

if compatibility-Tablelfrorn-node, to-nodeJ - OK then retum success

else retum failure

Note that the procedure TraverMGraphF~goes backward or forward one link in

the data flow graph depending on ·direction·. AddPIapewtyI'romNodeToNode adds the pr0­

perty list of the first node to the second.

3.3.	 Matchi.. constr-..s

After a module's data flow subgraph has been matched with the program data flow

graph, there are constraints that may still haW! to be tested. Specifically, a.module may haW!

certain use requirements that should be satisfied before the module is finally selected. A

aood example of this occurs in the signal processing domain where different implementations

of a filter haW! different performance (noise, sideblInd suppression, Q, etc.) characteristics.

These performance crileria are stated as part of the module specification and are checked

before being officially matched.

As an example, take the implementation of a set using linked lists. One criterion (con­

straint) for selection might be ·use this if the number of items in the set will exceed 100·.

This would be specified as part of the module specification as ·(constraint (> size 1(0))",

Examples of matching constraints can be found in the appendices. The actual checking of

matching constraints is doneby the search technique (see chapter 5).

3.4.	 Specific~tion constr~ints

Specification constraints are specified by the user of the system before selection besins.

These constraints reflect the goals of performance and resource usase. For example, a

designer may want a design to fit in a definite amount of area or for certain procedures to be

performed in a certain amount of time. The former is an example of a resource constraint

(area < area-bound); the lalter is an example of a performance constraint (time-for-f < time-

bound). Note that both of these constraints are taken to be musts; any design created by the

system must satisfy these constraints.

But what happens if a selection is made that violates these constraintsl There are two

choices: (1) throw it out and (2) try and chanse the design into a worbbIe design. The ·mas­

saging· of the design is doneby special purpose design operators called "critics". These will

be discussed in much greater detail in Chapter 7.

Specification constraint checking, like local constraint propaption, is done with e4IICh

implementation selection. Unlike local port constraints, specification constraints are binary

relations between a resource and a fixed, measurable bound. The implementation of these

constraints is discussed in the chapter on search (see section 5.4).

The computation of time and area bounds in the VlSI domain are complex and can

only be approximated in the system because of the lack of layout knowledte. Area is

currently measured by simply addi.. the area 01 the seIec1ed implementations to the current

total. Real time bounds are much more complex; Sill just adds up module delays. This is not

sufficient since what is really required is a notion of critical path. The lack of good timing

measures is discussed in greater detail in the concluding chapter.

41 40

4. RNted work in constrain..

4.1.	 Constrain" in theIysis of circuits

Sussman and his students used constraint based systems for analyzing analog circuits

ISuS7SIlSus7). For example, Sussman and deKleer (deS80) used constraint equations to

analyze reasonably complex circuits. They used heuristic methods Iconstraint propasation

and symbolic algebraic manipulation) to solve for consistent solutions to these equations.

Their SVN system is capable of analyzing a reasonably small Circuit, such as a cascade

transistor amplifier and deriving nrious design parameters.

These systems are analytic systems (as opposed to generative systems like Slu) and

depend on the use of complex constraints to analyze the circuits.

The propasation techniques of Sussman and Stallman have been successfully used in

the analysis of digital systems. Kelley and SteinberB (KeS82) have implemented a system

called CRinER that can analyze digital circuits. CRinER uses constraint propagation to

derive the timing conditions and -behaviors- of the input circuit.

Unlike the systems of Sussman and students, CRinER uses a simple model of con­

straints and values. This approach is quite similu to the approach take here.

4.2.	 Constrain.. andi...

In the previous section the application of constraint propagation to circuit analysis was

examined. In this section, the use of constraints in planning Ithe reader should consult Nils­

son (Nil80) for an introduction to planning) and plan interaction will be briefly discussed.

Also, the application of planning methods in specific design and analysis systems will be

analyzed.

Stefik's thesis [Ste8Ob) lalso (Ste81b) (Ste81a/l used constraint based methods in the

planning and design of experimenb in molecular biology. Constrainb were used to detect

the interference of subplans and to reduce the search space of possible new plans. These

"global" constraints are similar to the -specification constraints" mentioned in the first section.

like Stefik's MOLGEN program, Sill uses constraints instead of a backtracking search.

McDermott's thesis (McD771 was directly concerned with the synthesis of elementary

circuit designs from a plan description. Constraints were used to express design constraints

and also to express planning preconditions. Theyeffected the planning process by only ~

ing those plans that satisfied the constraints. If the constraints could not be satisfied (McDer­

mott called this "constraint collapse"), then McDermott planned on using a planning mechan­

ism to correct the errant plan. This is quite similar to the notion of critics as expressed in

Chapter 7.

Brown's thesis (Bro76) dealt with the different probIern domain of debuging circuits as

opposed to synthesizing circuits. His process of -backtracing- to find bugs in a n0n­

functional receiver is similar to constraint propasation.

4.3.	 Other Constr_t lYsed methods

Steele's thesis [Ste8Oa) concerns the design and implementation of programming

languages based on constraints. However, the work is of little use to the probIern addressed

by this thesis (partly) because Steele uses constraints as a computational paradigm rather than

as a technique to cut search complexity.

4.4.	 Constrain.. and SNlCh

There is a close correspondence between satisfying local constraints, such as port con­

straints, and the "consistent labeling" (Mac77) probJem of Artificial Intelligence. For each

choice made by the selection algorithm, the choice must agree with the choices already

made. Furthermore, all of the succeeding choices must aaree with the choice being made.

Note that every choice restricts further choices by making the problem more constrained.

42

local constraints were used extremely successfully by Waltz IWaI7S). Using a labeling

scheme, he used the interaction between labels in a line drawing to drastically reduce the

search space of interpretations.

Mackworth IMacn\ restated Waltz' algorithm as his algorithm AC-2 and also presented

other algorithms that solve the "arc consistency" problem before searching. After applying

these "filtering" algorithms, the &earch space is reduced because the incompatible choices

have already been removed.

Haralick and Elliot (HaE801 used an algorithm that they called "forward checking" to

see if future selections will cause inconsistent labelings. They claim that forward checking

will perform better (i.e., less nodes expanded during search) than most search algorithms.

Nudel (Nud8]) has an excellent paper detailing an analytic approach to these "consistent

labeling" algorithms.

The common point eX all these constraint algorithms is that the search space can be

very effectively reduced by constraint satisfaction. The effect eX the particular constraint

approach is discussed further in the concluding chapter.

•tud i. com;n, youry.

Chapter 4

Matching

1.	 Introduction

Sill chooses implementation choices by searching through a library eX template descrip­

tions that describe the behavior (semantics) eX the available modules. The object eX this

search is to match the modules with parts eX the machine -ll!f'C!fatll!ld" by the input profIJ'am.

The matcher described in this chapter matches the data flow subpaphs eX the library modules

against the program data flow graph. Since the library modules can be parameterized, a ~

cess called "binding" is used to instantiate the library templates. After binding, the library

templates (now called instances) are ready for evaluation and search, which is covered in the

next chapter.

2.	 ~tchinl the library

The problem eX choosing implementations begins by matching the library with the ~

gram. The data flow graph provides a reasonable representation for the matcher to work with

because

111 A data flow graph is language independent, thus isolating the definition eX the library

from the language

43

44	 45

(2)	 The ~ta flow sr~ "fits" the problem of matching parts of the machine with parts from

the library.

In its purest form, subsraph matching is NPo(;OOlpiete. However, the problem is more

cOO5trained in Sill: each node in the ~ta flow lV~ has a label. Thee labels allow the

sraph matcher to run in linear time. Assuming matches are found, il15tantiation of the suc­

cessful matches follows. Note that failure to match eveIY node in the ~ta flow sraph is a

...... failure, since this Indicates that the library fails to "cover" the ~ta flow sraph of the

input PfOlVam. As Slated in the introduction to this chapter, the library entries are parameter­

Ized templates. This is because the modules are often of variable size (where the size

depends on the values of bound parameters). For example, the size of a bit vector represen­

tation of a set is dependent on the maximum number of items in the set. Insaantiation binds

propertie5 in daq flow nodes to parameters in the library specification for the matched

modules. After binding, it is possible to evaluate each inSla1lc:e and besin searching for the

set of insaances that will satisfy bodl the de5l8l'l pis andsemantics of the input PfOlVam.

:to Graph IIYtehins

The sraph matcher worts as follows: Each library subtvaph has an "entry node" that the

matcher U5e5 as a s&art node. FUIthennore, there Is a table that Bives the correspondence

between node labels and the library enIrieI wilh IhoIe entry node labels. So, the matcher

process tries to match eveIYsutJsraph of each module description in the library with the pro­

sram ~ta flow sraph for each node In the sraph. The languase used to specify the match

srapl! is ~y the same as the ianIuaIe used to pnerate the ~ta flow sraph$ (see Appendix

AI.

:t.1.	 Ubruy represenution

A module may have more than one ~ta flow subtvaph because a module may com­

pute more than one result. This is the case with many modules that have control signals that

dictate which function is computed. For example, a set representation may have size, add,

delete and membership functions in the same module. Therefore, it follows that the library

representation should reflect these different functi0n5.

This is done by describing the module in term5 of the conlrol signal bindinp. So, for

each binding of the control signals of a module, there is a data flow subsraph that character­

izes the behavior of the module Biven those control signals. For example, the representation

of the parallel bit vector set reprt!5enlation in the example has six functions: set size, addi­

tion, deletion, membership, aHisnment and initialize (5et to the empty setJ. The ~ta flow

subsraphs of this module would be:

deletiOll addition membership assisnment reset size

Figure 4.1 Data flow sutJsraph of the parallel bit vector module

The exact syntax and semantics of the ~ta flow sraph description is not of critical

importance; the full details can be found in Appendix A.

47 46

3.2. ~tcher oper.tioo

The graph matcher proceeds from node to node in a depth first manner by following

both fOlWard and backward arcs. It stops lra'-"!Bing a branch (arc) of the graph whenever

(1)	 A node has been already traversed (success)

(2)	 A node label doesn't agree (failurel

(l)	 A node type doesn't agee (failure!

Note that whenever a failure is detected, the whole matcher returns a failure. A suc­

cess, on the other hand, indicates that the matcher has gone as far as it can go ilnd that other

paths should be pursued. It should also be obvious that no node will be traversed twice.

Note also that In use (l), node types are a direct result 01 property determination ilnd

declaration. The use 01 node types permits the matches to be restricted by type.

3.2.1. The IIMtchi.. • IJOritNn

The miltching algorithm (henceforth ailed the "matcher") assumes the existence 01 the

following data structures:

(1)	 A symbol table, containina a map from symbols to nodes in the data flow lI'aph

(2)	 A data now lI'aph

(l)	 A control now lI'aph

(4)	 A table with a map from symbols to possible Implementations and subparts 01 the
implementations.

The matcher starts by iterating through the symbol table. The graph matcher works back­

wards from the terminal nodes to the interior 01 the graph. Each match is recorded and asso­

dated with the implementation and the control functions that would "create" the data flow

subgraph. The matcher algorithm follows, written in a pseudo set language.

The Match procedure matches up the data flow nodes in the data flow
,raph with the data now subBraphs in the library. Its side effect
is to create match nodes that detail these matchinBS.

procedure MatchO is

for each symbol in the symbol-table do

for each data-flow-node bound to the symbol do

; Find all the lXJ55ib/e imp/ementatiom by looking

; them up in the symbol to implementation table.

foreach implement, part in the

symbol-to-imp/ementation-tableldata-now-nodel do
Match-from-node(data-now-node, implement, part)

; Now match usin, the ANY nodes as _II
foreach implement in the

symbol-to-implementation-tabielANYI do

Match-from-nodeldata-now-node, implement, part)

end Match

where:

; Match-from-node tries to establish a match startin, from data-flow-node

; to the implementation "implementation" usin, the PiIfI name

; "part-nilme".

procedure Maic:h-f'OIIHlOde(data-flow-node, implementation, part-name)

; fach control now node needs i15 own match, so ...

foreach control-ftow-node 01 the data·ftow-node do

; fach "sub part" of a implementation (library moduleJ hiis
; iI ,raph (sub-,raphJ. This is matched iIBiIinst the data flow
; ,raph. If successful, it creates iI miltch node.
foreach sub-graph 01 the implementationlpart-name) do

if Miltc!l-tvaph-(rom-nodeldata-flow-node,

control-ftow-node,

sub-tlraph) then

Match-Check(Create-match-nodeIsub-sraph, implementation, palt-name))
end Match-from-node

where:

; Miltch-,raph-from-node tries to match the data flow fIlaph

; ",raph" starting from the node "data·flow-node". The matcher

; succeeds only if the nodes were used by "contlOl-now-node"

; The exact details of the ,raph matcher are omitted due to the

; dependency on the graph representations.

procedure Mat~aph-ftonHlOde(data-now-node,control-ftow-node, graph)
if the control-flow-node is in

the control-flow-nodes 01

the data-now-node then

(match the graph using the description)

and:

; Match-Check tries to determine whether the match is just a new

48 49

; part of an already existing implementation. If it is a new part, After calling the matcher with the subgraphs of the binary tree implementation, the data flow
; the it returns the instance of the old implementation, else nil

graph of the sample program will be matched u shown in the figure below. Note that the
procedure ~cft.Check(match-node)

; Search all the possible mak:hes (the union of all the matches numbers next 10 the nodes in the program data flow graph denote the match number of the
; of all the nodes in the new mil£h-node).
foreach other-match-node in data flow subgraphs of the binary tree implementation shown in ~ previous figure.

union of matches of the nodes in the
data-flow-graph of the match-node do
; Make sure the implementations match
if the implementation of the other-match-node ­

the implementation of the match-node AND
; If so, then if the nodes of the mak:h-node overlap (intersect)
; with past matches (i.e., matches a/rNdy /Nde), then return
; the old instance
the nodes in the graph of the mateh-node intersect with
the nodes of past-malches of the implementation of the mak:h then

Add-matclHo-in5lance(mateh-node, insW1Ce of OIher-node);
end

3.2.2. An eumple of rndchina

At this point, an example will help demonstr_the poinl5 made in the previous section.

The binary tree set implement.atiOn has the data flow subgraphs shown below:

deletion addition membership size reset assiBllment iterate

..

1 2 3 4 5 6 7
Figure ".J Match of the dataflow graph and binary tree

Mak:h number

Figure ".2 Data flow subgraphs of the binary tree module

51 50

... Bindingand insWIt~tion

As stated in the first section, after matching the problem is how to instantiate the tem­

plate by binding the appropriate values to the template variables. As a result of property

extraction and type declaration, each identiflel' node in the data flow graph has type and

other properties attached to It. Theseare the properties that are used to bind variables.

The binding between the template variables and the properties is specified as part of the

library module definition in the library as a 3-tuple: the variable name, the property and the

interpretation function. If the interpretation function is absent, then it is assumed to be the

identity function, i.e. no interpretation is done. An example of a useful interpretation func­

tion is one that takes an inleBer ranae and interprets it as a size.

".1.	 An ex.vnple

Consider the implementation of the set variable x (or y) as a parallel bit vector. The

critical parameter of the parallel bit vector implementation would be wordWidth which is

the width of the implementation in bits. The relevant property of the variable is the size of

the set. So, since the size is equal to the number of bits, no interpretation function is

needed. Therefore, thevariable wordWidth in the implementation template is bound to the

size of the set which is an established property of the variable.

More precisely, this is done by naming nodes in the matched data flow subgraphs.

After naming thew nodes, then the bind section of the library specification can directly

specify the properties in the named node. A peek at a library definition in Appendix CorD

will be instructive.

5. RNted won
The matching procedure described in this chapter is similar to template matching in

table driven code generation. It is also similar 10 matching used in widiom recognitionw.

These related areas will be discussed in the next two sections.

5.1.	 Table driwen code pner~tion

Beginning with Cattell's thesis ICat78J, there has been increasing interest in the use of

tree matching in code generation. Ganapathi, et. al. IGFH82J has an overview of the5e tech­

niques.

Cattell ICat78JICat79JICat80J implemented a code aenerator aenerator that used heuris­

tic search to choose the tree matching templates for the actual table driven code aenerator to

use. His matcher was derived from his wMaximal Munching Methodw (MMM) (paee 37 of

Cattell's thesis), which is a tree matcher that attempts to match larser trees first and then

recursively tries smaller trees on the remaining subtrees.

Glanville IGIG78J used an LR parser-like sY*m to do the tree matching. This

approach is similar to Cattell's, except that it uses parser tables to do the matching.

Aho and Johnson IAhJ76J used dynamic programming 10 aenerate optimal code for

expression trees (daBSwithout common subexpressions). Their solution uses line phases. In

the first pass, cOSlS are assitpled 10 nodes in the expression trees. These cOSlS are derived

from the code sequences that match the sublrees. The second pass divides the tree into sub­

trees that must have results stored in memory. The last phase actually ae"erates the code.

Their algorithm is linear in the number of nodes but it is exponential for the number of

choices at each choice point.

5.2.	 Idiom rec:opition and other matchen

Geschke IGes72J also used tree matching in his thesis work on global program optimi­

zations. He used the notion of similarity between trees to automatically place procedures

inline. The measure of similarity was made by a top.down tree walk of the two trees, com­

paring nodes at every branch.

52

Snyder (Sny821 presented an algorithm that finds and selects "idioms" (commonly found

subtreesl in arithmetic expressions. The running time for his algorithm is Q(n log nl for worst

case recognition and Q(nl for selection. While closely related to the problem at matching,

idiom recognition benefits from several restrictions, which are covered in the next paragraph.

All at these algorithms share common problems.

First, all at the above algorithms choose a minimal cost template at each choice point.

The problem with this strateaY is that multiple paths are not explored, which may mean that

other more productive paths are ignored. Second, all at these algorithms match arithmetic

expression trees, not graphs. Third, all at these algorithms compute (choose) one best selec­

tion - there may be more than one, i.e., there may be other different solutions with the same

metric value. Finally, these algorithms generally assume that the larger the matched tree is,

the better it is. This may not be true if a collection at smaller matches will do. (However,

this is probably not often the case).

'Don'11c!I doubl md SUspKlOII ".,)'OU'~.

Chapter 5

Selection

1.	 Introduction

The previous chapter was concerned with how to match the library modules with the

program. Once the matcher has found viable implemenution choices, the next step is to

somehow choose an implemenution for every dau flow node in the program. This chapter

considers:

(1)	 how to search through the implemenution choices

(2)	 how to evaluate possible implemenlalion choices

(J)	 the effects atsearch and evaluation on the library description

2. Selection _III INICh

2.1.	 Introduction

At this stage, the matcher has found matches between the library and the program. As

a result ot the matching, every node in the prosram's dau flow graph should have an

attached set at possible insunces that involve that node. Selection is the process atchoosing

among instances attached to the data flow nodes. The selection procedure is also responsible

for checking constraints.

53

54	 55

2.2.	 The selection procedure

The selection procedure works as follows: First, the nodes in the data flow graph are

sorted by the number of instances that use the node. This permits the selection procedure to

start from the most "obvious" (most constrained) choices and continue to the most "complex"

choices. Next, the search proceeds from node to node and for each instance attached to that

node:

(1) Checks to see if this instance has already been selected by another node

(21 Checks port types of the new instance

(3) Checks for overlap of the new instance

(4) Evaluates the costs of the new instance

(5) Adds these costs to the costs of the already chosen instances

(6) Checks each new choice to see if it violates design constraints (and calls critics if it
does)

The first step makes certain that the choice has not already been made. This can hap­

pen if the instance involves two or more data flow nodes and some other node has already

been selected before the node being expanded. This is perfectly permissible and no further

evaluation is done.

The second step checks the type compatibility of the new instance and the instances

that it ·talks" to. If conflicts exist, then the Instance II not chosen.

The third step is necessary to ensure that the new Instance does not use any of the same

terminals as any of the existing instances. This prevents multiple representations for the same

variable.

The fourth and fifth step evaluate the resources now consumed by the selections made

so far.

The last step, step six, ensures that the new addition does not cause the generated

machine to exceed design requirements. As a side effect, a possibly inefficient machine may

become optimized in order to meet the design requirements given by the user of SIll.

3. Se.n:h techniques

3.1.	 Int~U(i~

Search procedures can be broadly divided into backtracking and non-backtracking

methods (A general overview of search techniques can be found in (Nil80lI. Both of these

search methods have drawbacks: Backtracking searchs (such as depth first search) can be

expensive (in time costs) while breadth-first searches are exponential in space costs.

One solution, therefore, is to choose a search that can run in bounded time and

bounded space. The idea behind the search used In this work is to use a modified breadth

first search on an already constrained search space.

3.2.	 S~ Surch

As stated above, breadth first search is exponential. One way to surmount this problem

is to expand only the most promising nodes at any stqe. Lowvene (Low76) used this In the

Harpy system and called it a ·beam search". (The list of avai~ nodes is called the

"beam"), Nilsson calls it a .stapd search·. It was originally used by Doran and Michie

(Dor) in a graph traverser. The problem with a stapd search is that it assumes that every

step has the same cutoff factor - this Is clearty not the case. When the search !Jeains with

the most constrained variable, there an! -V few choices. As the search proceeds, the

number of choices blows up. Therefore, the Idea behind the contraetin, beam search is to

permit extensive branching at first and to focus (i.e., contract) the beam as the search

proceeds. The purpose of the contraction is to allow as many constraints to interact as possi­

ble during the beginning stases of the search, but al the search pI'OBreSSe5, to count on con­

straint interaction to bring the search within bounds.

57 56

1.1.	 Stqed surch analysis

Nilsson (Nil80J uses two measures of search performance: penetrance and branching

factor. Penetrance simply is the total number Ii.e., the sum) of nodes expanded divided into

the path length ("levels· expanded). The branching factor assumes that pruning is not done at

each stage of the search - of course, that is exaetly what does happen during a staged search,

therefore, this measure makes the most sense fof a dep«h first search or a full breadth first

search. For pruning algorithms such as the staged search, a different measure, called average

branching factor can be computed. This is the total number of nodes expanded divided by

the number of expanded nodes. For a search without pruning, this ratio is 1:1. Since the

pruning technique used here depends on the beam cutoff and on the constraint interaction

between selections, it is always less than 1.

Because the beam search operates using such fixed bounds, it is relatively easy to esti­

mate performance parameters such as penetration and branching factor. The analysis is as fol­

lows: Assume that there are n choices to be made. Then, the depth of the search tree is n.

The number of nodes expanded is dependent on both the number of available implementa·

tions and the interaction between the constraints and the implementation choices. To com­

pute the maximum assume each implementation has Ie choices. Then, each step generates b

(beam size) • Ie choices. This, multiplied by the dep«h gives the absolute maximum number of

nodes expanded (upper bound). This I,

N-b''''n

Note that this assumes that there are no interactions between the port constraints of the

library instances during the search. It also assumes each variable has the same number of

library instances. While clearly not realistic, it is sufficient to derive an absolute upper

bound.

A contracting beam search expands fewer nodes as the search proceeds. Therefore, the

total number of nodes expanded, N, becomes:

i-n
N= ~1e·C(i)

I-I

where cm dictates the size of the contracting bNm. Now, let

C(i)-(n -i+ l)"1e

i.e., cm is a linear decreasing step function. Then

N _lel(nl+n).

Note that in this analysis cm is assumed to be linear with i. Such a restriction need not

apply, but it does make the analysis easier.

1.4.	 S..... INICh IIINIUremenb

This section discusses the measured performance of the beam search while finding a

solution for the sample program. Measurements were taken of the branching factor and

penetrance while the search took place. The figure on the top of the next pase is the tree of

choices for the sample program and the iaIOpie library. The iaIOpie library is an abbreviated

venion of the normal VASL library - it only has a simple set of selections (only one serial and

parallel implementation for a set.l.

The figure on the boaom of the next pase illustrates the number of nodes expanded at

each level.

59 ')8

y

forallil J

for811[2\

withlll

<>

Node Search level

0

newlyRelated

related 2

found

base

x ~ a]

4

5

,. ... 6

7These choices
WE're already 8made by the
lections above 9

10

11

Parallel Solution Serial Solution

Figure 5.1 Search tree 01sample program with sample library

6
• Staged search
+ Full search +

0

,

5

4 +

+

n
0

d
e
s

]

2

+

+

+

• • •

0

0 2] 4 5 6 7

Search level

Figure S.2 Graph 01 nodes expanded by level

3.4.1. The SNICh ~

The following algorithm is the search algorithm used by SIll:

procedure SNrdt() is
o\d-node-list :'" nil;
; Firsl, JOlt accOldin, to the number 01possible Implementation choices
; ("'insunces")
sort search-nodes by number 01 instances into node-Iist;
foreach node in node-list do

new-node-list :'" CrossProducUnode, oId-node-list);
; Now, JOlt them by the metricso dlat the most promisin, ones ate
; at the head 01the list
sort new-node-list by score:
switch search-type into

case CONTRACTING:

tNncate new-node-list at

maximumBeam5ize - level • beamlncrement;

reject tNncated nodes:

case 5TAGED:

tNncate new-node-Iist at maximumBearnSize;

case FULL:

end; 01switch

old-node-Iist :- new-node-Iist;

end; 01 foreach

end Search;

where:

; CrossProduct does exactly what its name implies· it mums the

; ClOSS product 01the input node and the list 01nodes.

procedure erc.Product(node, Iist-ol-nodes) is
; If the list is suttin, our. initialize it
if Iist-ol-nodes - nil then return node
else
; Next,. check to see 01 the inSWlce has already been chosen
; (/1'5 possible that two data flow nodesem share... implementation)
if the instance 01 the node is in

the instances oIlist-ol-nodes then ignore
else
if Overlapslinstance 01 the node, instances 01the list-ol-nodes)

then ignore

else

retum NewEntry(node, Iist-ol-nodes)

where:

; Overlaps checks to see 01 the data flow graphs 01the insLJnces

; overlap.

61 60

procedure Overbpl(instance, instance-list) is

foreach other-instance in instance-list do

if nodes of instance INTERSECT with

nodes of other-instance then

return success

else

retum failure

end Overlaps

and where:

procedure NewEnlry(new-node, past-nodes) is

; fir5f, check 10 see if the node is already there

if node is in pa§l-~ then retum

else

; If there aren't any other nodes, then create one for sure

if past-~ .. NIL

then

create new-search-node;

score new-search-node;

; Here Is where properties are propagated

if PropagateProperties(new-search-node) then

reject new-search-node;
; and S/ubal constraints checked (and maybe critics called)
if ConstraintFailure(new-search-node) then

reject new-search-node;

end NewEntry

where...

procedure ConIIrMfililure(search-node) is
; To check the global (performance) constraints, check each constraint
; against the design. If any constraint fails, then call all the
; critics associated with the constraint.

foreach Blobal-constraint in g1obal-constraint-uble do
if Check.(:onstraint(search-node, gIobal-constraint) then

foreach critic in critiC' of gIobal~nt do
CaIlCritic(critic)

; Now check the global constraints asain; if they're still unreasonable
; then return failure ...

fOl'each global-constraint in global-constraint-table do
if Check.(:onstraint(search-node, gIobal-constraint) then

retum failure;
retum success

3.5.	 Put work in seledion

3.5.1.	 Automatic seledion of cia.. llructures

Low ILow74) was one of the first works in automatic selection of data structures. His

system chose set and record implementations for a subset of LEAP IFeR69). His system used

both analysis and simulation data to derive estimates of ellecution speed of the input pro­

gram. The selection search alBorithm was a hill climbinB depth first search that pursued a

minimal cost function. The search evaluation function included a function that reflected the

swappinB allJOl'ithmof the host machine.

Low's work has several limitations worth nocinB. First, he did noc permit arguments of a

function or operator to be of more than one type. For example, a set union operator must

have compatible input data types. Also, each data type representation has only one imple­

mentation for a Biven operator in the Iilllary. low did also noc permit multiple representa­

tions for a Biven variable. This contrasts with this work, where there are many possible

representations (implementations) for both operators and operands.

Low's work was extended by Rovner IRov) to the domain of relational data structures by

addinB redundant representations and multiple access paths to data representations. He also

instituted a two step selection scheme where implementations are constructed from primitives

found in the library. Note that Slu does noc do two step selections. This is because the VLSI

domain encourages the desisn of hiBhly compact and specialized parts. BuildinB library parts

from smaller parts could be done, but would probably be much more expensive lin both time

and area) than a circuit desi(llled specifICally for thai task.

Rowe and Tonll! IRoTI developed another two stase refinement system that synthesized

data structures from primitives. Each data type was represented by a "modeIinB structure".

These "modeling structures" were then used to synthesize the data structure from the Iilllary.

Their selection phase used a branch and bound search to do the actual selection. Their use

63 62

of a branch and bound search closely resembles the approach taken here.

Tampa and Ramirez (ToR80) developed a dynamic programming approach to data

structure selection. Ramirez' thesis (RamBO) analyzes this method and other problems in

aU1Dmatic data structure selection.

The SEll (SchSII group used a technique they called "basing" (DGl79) where sets can

be represented by an auxiliary data structure called a base. A base can be further specified by

declarations that use the base. Thesedeclarations indicate (indirectly) the actual implementa­

tion. More recently, Schonberg d. at (SSS81) developed an algorithm that automatically

chooses bases for SEll programs. Note that the basing scheme allows runtime typing and a

type analysis algorithm (such as thosementioned in Chapter 2) must be used to asceltain type

information.

The basing system refIeclS a number of restrictions inherent in the SEll design. In par­

ticular, there are a small number of implementation possibilities and the selection techniques

reflect this by the limited number of specifications for bases.

3.5.2.	 Automatic

Kant's (Kan82) LIBRA system was part of a lareer aU1Dmatic programming system called

PSIIGre76). Kant used production rules 10 bolb analyze the program and senerate implemen­

tation structures. The approximalely <tOO rules were divided into two basic catepies:

"searching knowl." and "building knowledle". The "searching knowledae" was further

divided Irlto resource rnanaaement and plausible implementation rules. The "building

knowledae" was divided into coding and analysis rules.

Kant emphasizes the use of production rules in analyzing as well as synthesizing pr0­

grams. Sill uses property extraction, declarations and occasionally user input to supply the

analytic results. LIBRA also uses production rules for the selection - Sill uses a heuristic

search algorithm. Also, LIBRA uses production rules to express constraints where Sill uses an

explicit representation of constraints.

Kant's system was really developed for an experimental environment - her, system is

very flexible but also very expensive. She concluded that systems with single levels of refine­

ment (like Sill) would perform adequately using search techniques like the ones described in

the previous sections of this chapter.

4. Metric'

4.1.	 Int~

AI. each stase of the search, an evaluation function is called to assess the resources

being used at that level of the search. These functions are called "metria" and they guide

the search by "measuring" the resources consumed by each collection of instances.

The design of a metric involves two factors:

(1)	 fairness - the function should not permit unworbbIe soIution1 to achiew! high scores

(2)	 accuracy - if possible, the metric function should N!CUm a value close to the "real
world" resources consumed.

The last condition is required because the ...1 (resource) constrainls thatthe UM!l' pr0­

vides are in terms that the user understands. Therefore, the Iystem and the UM!l' must qree

on the cakulation of the metrics, otherwise the critics will be either called too often or not

called often enough.

4.2.	 VLSI metria

One problem with VlSI metrics II that they are technolotJy dependent, Le., an evalua­

tion function for NMOS is not the same as an evaluation function for CMOS. Therefore, one

must be careful in choosing a function that reflects the resource tradeoffs of the implementa­

tion technology. Many theoretical studies have been made of various resource bounds.

While these are nol directly applicable, they can provide a basis for developing a proper

metric.

65 64

Most 01 the recent work in VLSI theory (Tho8OIILiS1I8au8111ChM811 uses a complexity

measure 01 ATl where A is the area 01 the circuit and T is the time required to compute the

result. This idea was extended to the diBital sipl processing domain by Cappello and

Steiglitz (cas~U) who used a complexity measure 01 ATP, where P is the period 01 the com­

putation. Note that the period 01 a pipelined function is much less than the period for a

non-pipelined function because 01 the hisher throuahput possible when the pipe is full.

There#ore, !his metric function fal/OfS pipelined implementations.

In S1u, wire areas are unknown until the placement and routing subsystem has been

run. Therefore, it is not possible to obtain accurate figures 01 area consumption. As a result,

the scheme behind the metria actually used by SIu is to total the resources consumed by the

non-wire portions 01 the machine lthe modules) andestimate the.wire U§aJe.

4.3.	 Actual metria

The previous chapter on binding detailed how the instantiated modules are used by the

metrics to calculate the evaluation parameter. Each 01 these actions has an impact on the

specification 01 the library.

As stated earlier, most library modules are parameterized so that the compiler can gen­

erate arbitrarily wide instances. The metria also haw an impact on module specification.

Each module mull haw its height and widlh specified so that area can be computed. Of

course, the heiaht and width formulae can be parameterized wi!h the module parameters and

bound later. Area computation may also InvoIw some overhead, so that must be included

also.

•As an example 01 the library specification details explained above, consider the exam­

ple library. The sample parallel bit vector let representation would have the following area

calculation:

(area (width (ti~8 20 n)) (heiiht 100))

Likewise, timing parameters can be specified:

(timing (delay n))

After the parameters have been bound, these functions can then be evaluated and used

by the metric functions.

67

·Very soon .ttd in p~...nl comp.Jny"

Chapter 6

Machine generation

1.	 Introduction

The previous chapters have covered the various modules that cOlnprise SILl. In this

chapter, the underlying architecture 01 the generated machine is discussed. After consider·

ing the architecture, the final stI!ps 01 data path creation and microcode generation will be

considered.

2.	 Machinearchitec:ture modelsof computation

Behind every machine architecture Is a model 01 computation. Most 01 the machines

that are in use today are von Neumann machines; they have a control store, a memory that

holds bod! program and data and an arithmetic unit that is under the "direction" 01 the con­

trol store. If the memory is partitioned Into separate areas for prosram and data, then the

machine is known as a "Harvard Machine", after the Harvard Mark I. The next two sections

present the model used by SIll and an overview 01non von Neumann models.

2.1.	 Hilrvanl mKhines

The work reported in this thesis has assumed a certain cOlnputational model. This

model will be called a "maximally parallel" Harvard Machine.

66

"Ma"imally parallel" means there exists a unique data path between the expression

computed by the right hand side of an assignment statement and the variable on the left hand

side. It is maximal because fOl a given protP'am, there may be any number 01subtrees 01the

parse tree that COlnpu!e the same expression but do not share operator nodes. A simple way

to express this is "There is no sharing 01operator hardware".

Although there are no shared data paths in these machines, the input prosrams

presented to Sill are serial. This is due to the basic sequential nature 01the input languages.

There is an extensive body 01 literature concerned with analyzing and optimizing prosrams

for parallel sections IPKl80J. Such techniques could be 01 use in constructing parallel

machines. The effect 01 language design on architecture will be discussed further in the con-

elusion.

A crucial property 01any sequential machine is that the machine not execute two con­

flicting instructions at once. "Confticting" mNIlS that a varllble is being accessed or being

stored into by more than one data path. Since the control unit directs the use 01 the data

path section 01 the machine, the prob\em becomes one 01 generating microinstructions that

do not cause conflicts. This is easily done and will be discussed further in the section on con­

trol store generation.

2.2.	 Related wort in non won Newnann machines

There has been considerable work in the last few years on non von Neumann architec·

tures. In particular, reduction and systolic machines are being touted as reasonable models

fOl VlSI implementation.

2.2.1. Oil'" flowchines

Data flow machines are (among other things) a reaction against the serialism 01 register

transfer machines. The serialism is due (in part) to the serial access to central memory (the

69 68

famous "von Neumann boaleneck"). In data flow machines (Den791, the results of operators

are computed when the operands are present (ready). Therefore, it is possible that multiple

operators can be actively computins at one time. A1thoush some machines have been con­

structed, data flow machines remain I.y experimental. Some of the issues involvins

data-flow machines can be found in Dennis (Den791 or the survey paper of Treleaven

(TBH821.

How to compile "alsorithmic" lansuases to data flow machines is another issue.

Arvind (Arv791 discusses how to compile a dataflow lansUil8t! into a multiple processor data

flow machine. His paper takes extenSive advantase of the fact that the lansuase has no side

effects. The effect of this "feature" on the architecture of machines will be discussed further

in theconcludinS chapter.

Also, the work beinS done on the desisn of data flow lansuases such as VAL

(AcD79IlAck821 reflect some basic tenets of multiprocessinS such as explicit parallel opera­

tors and a lack of aliasins. Such lanSlJil8l!5 would be just as useful in S1u.

1.1.1.	 Reduction Machines

Both control flow and data flow machines have a similar idea: data flows from sources

to sinks throush operators. Reduction machines are different: operations are performed by

need. Reduction machines are desipted to execute reduction lansuases (Bac781. More work

needs to be done on how to write proarams usins reduction lansuases as well as how to

compile such prosrams into machines. further details on some reduction machines can be

found in Treleaven's survey papers ITBH82IlTre821.

1.1.3. Systolic: lIWlChinei

Systolic machines are essentially pipelined multiprocessors without a centralized con­

trol. Data is "pumped" from one computational unit to another with each clock tick.

Because the machines are pipelined (after a fashion), data rale5 are higher than equivalent

sequential implementations. KunS (Kun8l1 and Cohen (Coli are vocal exponents of systolic

machines. KunS points out thefollowins features of systolic models:

• Makes multiple use of each datum

• Uses extensive concurrency

• Only a few simple cells are needed

• Data and control flow are simple and reaular

VLSI desisners find the resularity of systolic architectures very appealins.

Althoush systolic machines are a powerful use of VLSI teehnoiOBY (for the reasons listed

above), limited work has been done on how to compile prosrams into systolic a1sorithms.

Moldovan (Mo1831 has recently shown how to compile loop computations usinS arrays into

systolic arrays. Leiseoon and Saxe (LeS8l1 present an alsorithm that convet1S a non-systolic

system into a systolic system.

It should be noted that systolic alpithms are a subclass of all a1sorithms; not all alao­

rithms can be (or should be) expressed in systolic form. In particular, systolic alsorithms are

well suited to some computationally intensive array alpilhms.

3.	 MKhine Gener~tion

To recapitulate, the stase is nOw set for the actual seneration of sisnal paths; the pro­

gram has been analyzed and the selection of implementations has been made. Machine sen­

eration besins by considerins the control paths.

3.1.	 Control JM""
The control paths of a seneric machine are shown in the fiSUre at the top of the next

pase. Notice how the jump sisnals senerated by the data path section are used to control the

microprosram counter. The microprosram counter is used to address the control store, which

in tum senera1e5 the satins sisnals for the data path. A sinSIe level scheme such as this is a

71 70

Microcode Memory

iump
conditioos

Control fields for selections

to data path

microcode
memotY

next
possible
address

iump
number

address

FiSUre 6. 1 Ge!leric control section

very simple control store; many more complex and different controller schemes are po55ible.

A review of microcode controllers can be found In Dassupla lOas8O). Burtle IBur82) and

Wilner and Parker IPaW81) have discussed virious microstore orpnization for VLSI, particu­

larly thole with encoding schemes (such as that found In the MC68(00).

When the data flow nodes In the prosram wese being created by thedata flow analysis

procedure, they wese taged with the conb'OI Row node that was "active" at that time. For

example, in an assignment statement, all thedata flow nodes on the risht hand side (as well

as the data flow node on the left hand side) would have the name of the assignment node in

the control flow graph attached to them.

Recall that thedata flow nodes also have a list of instances that "involve" the instance.

Therefore, it is po55ible to taB each instance with the control flow node via the data flow

nodes. As a result of this tagging, it is now possible to taB the control flow nodes with the

instances that "involve" the node.

Each control node also has a label that is used to determine how generation is done.

These labels are generated by the control flow analysis procedure. Only the NODE and TEST

nodes geoerate control fields. The remaining node labels (LOOP, LooPBACK and EXm are

used to control the program counter (PC) field. For more information on the labels, see

....ppendix A.

Note that each match node is a specific "subsection" of a library module· in particular,

these matches have bound control signals. These slBllals are the fields that must emanate

from the control store. So, control field eeneration is simply emitting the control bindings of

every match of every instance of the implementation of a library module. The last matter in

control field genet'ation is the assignment of the microprogram counter field. Each control

flow node has two pointers to other control nodes. These pointers are the "success" and

·failure" pointers. Only the TEST nodes use the failure field. This field becomes the prosram

counter field. As a default, the microcontroller assumes that the control word after the

current control word will be located at the current prosram counter + 1.

It is important to note that the current scheme at control flow eeneration does not solve

the problems of precedence. For example, the statement

a :. a + 5

will generate a simultaneous load and stole infO the implementation of a. This problem is

easily solved: all that is required is a procedure that detects such conflicts and moves the

appropriate conflicting operation down in the control store. (In this case, it would be the

storel.

Notice that this control store is not compacted in any way. A useful addition at this

stage would be a microcode optimizer that would move microcode fields upward in the con­

trol store. A review of microcode optimization as of 1976 can be found in Agerwala

[Age761. Fisher's trace scheduling [Fis81) is an example of more recent work.

73 72

J.1.1. Control Store Gener.tion

The following algorithm describes the conllOl §tore generation algorithm in the pseudo-

set language.

; In Con/lolStoreCeneration, a.b denotes the field b of a.

procedure CGnIroIStoreGeneration i§
foreach node in the control-Row1Vilph do

word := NewControlWOI'dO;

§witch label of node into

case lOOP:

word.success - node.succe§s;

case EXIT:

word.success .. node.success;

esse TEST:

word.success - node.success;

word.fililure .. node.fililure;

esse defilult: ; MUST be a ordinary node

word.success .. node.success;

; Now, lor all the matches of all the insLJnces for a

; given con/lOl node store thecon/lOl signal bindinss

; from !he implemenLJtion.

foreach InsLJnce in instance§ of §eill'Ch-node do

foreach match in matcbes of the
; This selects only the miltch nodes that effecr thar
; thepillticu/ar insLJnce
insLJnce INTERSEa miltche§ of the node do

; Srore field value (field name - control field
; of match.part) by the instance. The "implemenLJtion"
; is thedescription of the library module.
word.insLJnce . control of match.pilrt : ­

irnplernerUtion of Il\illCh.impiements;

Note that this omits the generiltion of the jump fields ilnd compression of empty nodes (nodes

without any control fields, just jump fields).

As an eXilmple of coouol field generiltion. consider the eXilmple prosram. The gen­

erated field§ for one of the illI pilrallel solutions is shown in the table on the next page.

PC b.J~ newlvRelated related found x v test next PC

0 reset

1 load store

2 nrwlvR.et.eed .,. PHI 12

J reset

4 reset
5 test

& iterate store end 10
7 reset
8 test

9 iterate !itore 1ter~1Df end 12

10 load with
11 §lore load load
12

Table &.2 Microcode fields for Silmple prosriVll ilnd library

4.	 0 ... pilths

The previous section has shown how fO construct the control pilths ilnd the control store

for the machine that implements the input prosrilm. The liISI task is the generiltion of the

data pilths between the modules.

OaLJ pilths are informillly e§L1blished durinS §election. As each §election is made, iI

data pilth is inferred between the ports of the new §election ilnd the ports of the §elections

connected to the new insLJnce via the dilti1 ill'CS in the dilti1 flow srOlph.

It now remains to generilte the final output, the net list.

5.	 Gener.tinB net lists

Net li§t generation is performed in two >tiIFS. FiiSl. the connections are made for every

port in every instance (except for control ports). This e§L1b!ishes the daLJ pilth §eCtion of the

machine. Second, the output control ports of every instilnce ilre connected to the jump field

multiplexer (see fisure &.1 in §eClion]). Now, the conllOl fields from the control store are

finally connected to the insLJnces they control. As a last step, the control field of the jump

74

"Work only lot !he bc!sr. rhink only 01 rhe brst MId8p«t only IIIebermultiplexer is connected to the jump control field.

Chapter 7

Design critics and Machine modification

1.	 Introduction

The machines that have been created 50 far are notable beause they waste one valu­

able resource: area. No data paths are shared and no conIn>I fields are compressed. The

intention of the design critics is to improve (or optimize) the maximal machine that was

created by previous stages of the system.

The notion of critics is not unlike the optimizins pass of a more conventional compiler

- except that critics do sweep over the prosram like a compiler. Rather, they are called

"as needed" whenever a conflict arises between user desllPl constraints and the resources

consumed by the circuit. This diffeR from the two previous use of critics in the p1annins

literature.

Sussman ISus751 coined the word "critic" to mean bodies of Lisp code that attempll!d to

reconstitute the plan whenever a suspicious, bullY plan was added to the Conniver IMcS721

data base. Specifically, critics were attached to IF·ADDEDdemons in the Conniver database.

Sacerdoti [Sac751 used critics to detect non-workins plans and to optimize plans. He applied

critics at the end of each p1annins cycle rather than when a bad plan was detected as Suss­

man did. Sacerdoti also applied all of his critics at one time - Sussman only applied the critic

called by the trap set in the data base by the IF·ADDEDmethod of Conniver.

7S

77 76

The critics proposed for use by Sill (the critics gallery WilS never implemented) ilre simi­

lilr in spirit to the critics 01Sussman. They ilI'e to be ilpplied, one ilt il time, whenever il con­

flict exists between il g10bill constrilint (il resource bound) ilnd ;an implernentiltion 01 the input

proBJ';arn .

2.	 How critia ue used

As stilted ilbove, critics ilre used to force the resources consumed by the compiled

milchine to be within limits. Critics ilre cililed most often when iln implernentiltion selection

is milde thilt violiltes il gIobill resource constrilint.

A critic should hilve access to three types 01inforl1liltion:

(1)	 A list 01 currently selected instilnces - This list Ciln be used by the critic to find the

implernentiltion selection thilt cilused the conflict. (Irs quite likely thilt the selection

thilt trigered the constrilint violiltion is not the selection thilt reillly uused the con­

strilint fililure, then!fore, il critic should check illl the selected implementiltions).

(2)	 The current diltil flow srilflh 01 the diltil path section 01 the milChine. One purpose 01 il

critic is to chilnse the underlyins milChine 10 thilt the resource constrilint is Siltisfied.

Therefore, the critic must be able to reild (ilnd chilnse) the diltil flow srilph 01 the

milChine.

(3)	 The eXilCl constrilint thilt fililed. This il 10 the critic can determine Whilt procedure to

follow. Note thilt since il resource constrilint can be an ilrbitrilry expression, il critic

Ciln be cillled for ilny number 01complilints.

3. Pouible critia

This section sugests il list 01critics thilt would be useful in Sill ilnd describes how they

would function.

3.1.	 D.... fMth oper.ton

3.1.1.	 0.... fMth bundlins

The class 01 Hilrvilrd Milchines discU55ed in the previous chapter is notable for their

lack 01businS. BusinS is used by computer uchitects to overcome the cost 01 implernentins

every diltil path between nodes in the diltil flow srilflh iIS il separilte path. This is ;accom­

plished by wrins (time-division multiplexinBl diltil paths under the control 01 the control

milChine. Oiltil paths should be -bundled- tosether If they ilI'e infrequently used.

TomS ilnd Wilhelm (ToWn) presented il dyn;amic prosrammins solution to bus illlOCil­

tion. While their illsorithm is optimill, it involves iln expensive combiniltoriill 5eilrCh. A

simpler busins il1sorithm was developed by TsenS ilnd Sieworek (TsS81). Their technique

creates buses one ilt il time by tryinS to assisn ill milny diltil paths to il new busbut without

introducins delily5 (and reducinS concurrency). TsenS ilnd Siewon!k's procedure would be

extremely useful to Sill.

Note thilt while businS reduces wirins i1reil, there mily be ildditionill costs 01 ilddinS bus

drivers if the units thilt ilre bused do not hilve bus drivers. Note illlO thiIt the busins critic

does not know about -passthroush" functions. Passthroush functions ;are oper;ations thiIt tum

il functiOnilI unit into il strilisht throush connection, t.e., no operiltions ilre performed ilnd

data is "passed throush" Such functions mUe "indirect paths" (Toms ilnd Wilhelm's term)

possible.

3.1.2.	 FunctiorYl unit Ihui...

Besides not shilrins buses, the uncriticized milchine doesn't Wre functiOnilI units

either. FunctiOnilI unit shilrinS c;an lake pI;ace when two (or more) functiOnilI units ilI'e identi­

cal instilnces; i.e., their parilmeters ilre the SillIIe.

79 78

Note that sharing a functional unit may have a time penalty - an operation that was

formerly performed in parallel may now haYe to be performed serially because the functional

unit	 must be shared among two computations. This type of tradeoff is very difficult for the

system to make.

The sharing of functional units could be performed by searching through the selections

and trying to find two selections that are equivalent, i.e., the properties attached to the ports

are idenlical and that the units are of equal size.

When the decision to share a functional unit has been made, the shared functional unit

must have multipleXers introduced on the inputs. The space tradeoff for this is the cost of the

multiplexers YerSUs the cost of the ~itional unit. In all but the most extreme cases, the cost

of the multiplexers is very !llN1I compared to the cost of the ~itional functional unit. The

exact algorithm is as foIlow1:

; FindllndShare takes thewhole list of MinstancesMand tried to
; find units that can be shared.

procedure flndAnd5hare(instances) is

foreach first-instance in instances do

foreach second-instance In instances - first-instance do
; If lhe two instances are instance of thesame library module
if the Implementation of the first-instance ­

the implementation of the second-instance AND
; and theparameters march...
BoundParametersMarch(first-lnstance, second-instance) AND
; and the instances aren't used a' thesame time...
control nodesof first-instance INT£RSECT
control nodes of second-instance - Nil then

Create a multiplexer for all the inputs of first-instance
Connect the inputs of the first-instance to the multiplexer
Connect the inputs of the second-instance to the multiplexer
Connect the outputs of the first-instance to the destination

of the second-instance ;(this assumes tri-state busing)

Get rid of second-instance

end

where:

procedure leundP.aaneIeFIMAtc:h(first-instance, second-instance) is

foreach parametl!r in the library description of first-instance do

if the value of the parameter in first-instance ..

the value of the parameter in second-instance then

return false;

return true;

end

3.2.	 PipeliniRB

Register transfer machines have problems with data rate. This becomes apparent when

one considers that data must flow from the input node to the output node over a number of

computational steps (sequences). So, at a minimum, the output data rate is proportional to the

length of the microprogram. (This assumes no loops). At wont case, the output data rate is

proportional to

t
non -loop + ~ loop Ii)en Ii)

1-1

where loop/it = loop sectionIi)
and n/i/ = maximum number of iterations for loopsection i
and l	 = number of loops

The output rate of a register machine can be improved by introducing latches at the

beginning of each stage. Hence, partial results of a computation can be held in several

stages, similar to a production line. An introduction to pipelining can be found in

Ramamoorthy's survey lRal77). Koge lK0s8l1 is an extensiYe reference.

Pipelining can be easily introduced Into the machine by the introduction of latches

(called "staging latchesM) at the input and output ports of every instance. The control of the

staging latches can be done easily by the control store. HoCvever, there are several problems

with pipelined machines. First, conditional statements cause branches, which break up the

data flow. Second, feedback loops in the machine can cause the machine to wait for data to

be fed back. Third, loops in the microcode can introduce delays (and subsequent loss of

throughput) by keeping functional units busy that are fed by data paths above the loop. Such

delays must be compensated for by memories such as queues.

81 80

leiserson and Saxe IleS8l1 have developed an algorithm that converts semi-systolic

machines into fully systolic machines. Their procedure makes use of the notion of adding

delays ("retiming") to the arcs that connect operaton. A similar form of retiming could be

useful in the transformation of register transfer machines to pipelined machines.

Although no pipelining critics were implemented, the system could have benefited from

the use of both an algorithm fcK the insertion of staging latches and shimming delays. Such

critics are a necessity in the digital signal processing domain where speed is often of the

utmost importance.

3.3.	 Pinout limiutions

Although VlSI circuits are Increasing in complexity, there are fundamental physical lim­

itations that prevent the implementation of certain circuits. Pinout limits are an example of

such a physical limitation. Pinout limits are a result of packaging limitations. Any circuit

that is designed by a VLSI compiler must not exceed the maximum number of pins for a given

packaging technology. The fundamental technique for avoiding pinout problems is to multi­

plex pins. This is commonly done in many commercial microprocesson. Of course, this has

its price - it limits the data rate through the multiplexed pins. The pinout critic would be

called when the number of pins exceeds the package count. The number of pins currently

used is simply the number of signals (ports) without attached ports.

3.4.	 Control section operaton

3.4.1.	 Optimization

As pointed out earlier, although the data path can operate in parallel, it is strictly lim­

ited by the serial nature of the control machine. Recall that each microprogram word

"represents" a statement in the input program. It is possible that some fields in the control

store may "lie fallow" which the remaining fields are used in the computation of the state­

ment. These unused fields may be used in subsequent computation, so it pays to try and

pack these fields as tightly as possible. As mentioned in the previous chapter, This brings in

the whole realm of microprogram optimization. Dassupla IDas80J and Aserwala IAse7bJ

have fine reviews of some of the techniques in use by microprogram optimizers. DaVidson,

et. al. IDlS81 J performed some experiments on compacting horizontal microcode (such as

that generated by Sill). The application of their techniques to the output of Sill would be

extremely advantageous, as control store compaction cuts area of the control store ROM.

3.4.2.	 Field encodi"l

Another possible optimization is to encode several control fields together. This is par­

ticularly useful when there are many one bit control signals of which only one is active at a

time. If this is the case, then 2ft signals can be encoded as n wires plus the overhead of

decoders. These decoders are placed at every use of the encoded control signals. Saunders

ISau79J describes a similar optimization that can be perfonned when constructing specialized

interpreters.

4.	 WlYt to do when critia f~1

Critics can fail to obtain their objective. The simplest case of this is when a critic is

unable to make any improvements in the machine. This may occur when a machine has

already been optimized and another critic is called. Unfortunately, the way out of this

dilemma lies directly with human intervention. In particular, the user can be infonned of the

inability of the system to make any improvement and the "susgestion" is made to change the

resource constraint. After changing the constraint to a more reasonable value, the system is

free to proceed.

83

"E-rthin, will now C~ yoUI w.y"

Chapter 8

Implementation, Results and Conclusion

1.	 Introdudion

First, this chapter will discuss the actual implementation and results of the ideas

presented in the last 6 chapters. Next, areas for future research will be explored and finally,

the conclusions willbe presenII!d.

2.	 lmolementation

SIll is orpnized along the lines shown in the figure on the next p;t8I!. Solid lines

denote data flow; dotted boxes denote unimplemented sections. The labels on the arcs are

the names of data formals.

Before Slu can process the input propam, the various language dependent files must be

read in. Sill is desiBJ1e(l to be lanBUlll! Independent - the syntax and semantics of the

lanBUage are defined bv files that represent the parsing rules (productions), the data and con­

trol flow -equations-, the property propagation tableand the implementation library.

Briefly, Sill runs as follows: the input PfOII'am is scanned and parsed bv a recursive

descent paner. The output of the paner is an ordinary pane tree. The pane tree is used as

an intermediate form for several stages of analysis. The first action after parsing is control

and data flow analysis. The analysis algorithm is described in Appendix A. After this is com­

D.ullow
eqwIlonI

~

Llbr..., .aphs

Librarydefns

Grammar

Graph
Transformations ~

.. : Critic
: Gallery

Figure 8.1 Detailed block diagram of system orpnization

pleted, both the dala flow and control flow graphs have been constructed. Next, the pane

tree is traversed and declarations of types and other properties are attached to the terminal

82

85 84

eMta flow nodes. Note thalthe rather baroque type declarations 01 both VASL and CLASP are

meant as a substitute for more inllOlved property extraction. Next, property extraction is done

and properties are propasated to the non-tenninal (interior) nodes 01 the eMta flow graph.

Matching uses a table 01 conespondences from eMta flow nodes to possible implementa­

tions that use that node. Matching tries to match the eMta flow subgraphs 01 the implementa­

tions in the library stafting from each node in the data flow graph. The selection stage

weighs the costs 01 making each selection and also checks the port and specification con­

straints.

Note that critics may be called Jl any stage 01 the search, hence there is a dashed line

to the "critics gallery", which is intended to be a collection 01 LISP code. Finally, the

remaining implementations are Biven to the control store generator, which creates the control

store and assigns the control fields. The final output is the net list generated from the imple­

mentations.

The implementation was written in Franz-Lisp, a MacLisp dialect (in tum a descendant

01 Lisp 1.5) that runs on the VAX-ll series computers. The program occupies 475 pages 01

memory before compilation begins. The VASL program used as an example ran interpretively

on a stand alone VAX llnSO in 60 minutes 01online time and 55 minutes 01 compute time.

3.	 ReIUIts

The example program generated two solutions (the fully serial and fully parallel solu­

tion) using a full library and a staaed beam search.

A full annotated run 01 the sample program and a larger VASL program is shown in

Appendix C.

The ultimate goal 01 this work, as elucidated in the introduction, was to enable an

unsophisticated user to generate a VLSI circuit that executed the user's program and also met

the user's established design requirements.

SIll meets these goals through its exploitation 01 various constraint based methods and

heuristic search. However, a thesis often introduces more problems than it solves; this work

is no different.

4. Directions for future resurc:h

4.1.	 Semantic.

The semantics 01 most programming languases are ddined informally through the use 01

procedures called "semantic routines". Only recently have more formal methods such as

denotational semantics been used to describe the semantics 01 Ianguaaes. These "semantic

routines" are called during syntax directed translation. SILl is different: the semantics 01 the

library modules are partially described by a dataflow graph. The matching procedure essen­

tially states that a piece 01 the program and a subgraph are equivalent - both in terms 01 the

graph and the semantics "expressed" by the dataflow subgraph. What this means is that the

nodes generated by the eMtaflow analysis procedure have a particular syntax and that it is the

matching that ddines the meaning (or semantics). Of coune, there's much more to the

semantics 01 hardware or VLSI (or programs for that matter). A much more extensive effort is

needed to define the semantics 01 hardware (broadly construed).

4.2.	 eritia

As in Sacerdoti, the use 01 ~ritics in SILl is a replacement for a more precise semantics

01 optimization.

·The coostrolCtive critics-eredewIoped in ... iod hoc fehion. No ~ been made
to justify !he translonmtions !hal they perform or to enable dlem to aeneralle all valid transfor­
mations." (Sacerdoti ISac751, lIP. 126)

This is due to the lack 01 semantics 01 hardware optimization. This is another area ripe for

exploration.

87 86

4.3.	 un of procedure c~li.. mechanisms

The astute reader may have noticed that Ihere hasn't been a mention 01 procedures.

This is not serious if the depth01procedure callin8 is not lleat - the immediate solution is an

on<hip stack that can be part 01the control section. However, fOf recursive procedures, this

becomes a much more serious fault. One solution is to move the stack off<hip - but this

introduces the delays associated with off chip memory. Another solution is to try and com­

pile the recursive function into a network 01 machines. This notion will be expiOfed in the

next section.

4.4.	 Interaction of mKhinel MIl ~

f'rotp'ammers know that lalllJUilBeS heavily influence their prDlVammin8 style. likewise,

laJ18UIIl!S exert heavy influence on the machines that can be senerated from prDlVatnS writ­

ten in them. In particular, lanlUlPS with assipvnent Introduce the notions 01 s/obal and

shared state. This restricts the Implementation by reduci.. the amount 01 parallelism in the

resultant machine. This is wide/y recotJI1ized and efforts are bein8 made to chan8e these

notions. fOf example, Arvind (Arv79J has shown how to compile a Ianpase without side

effects into an array 01machines. VAl (AcD79J is a lanauaae desiped b execution on data

flow machines without Blobal state. There should be more wen done In how to compile

such la"IUIPS into machines.

In fact, Ihere should be more wen done Is how to COfnpile lan8UlBeS into machines 01

any bm. One 01the few wens on this topic Is Wand IWan82J. He discusses the autOfnatic

creation 01 machines from a denoUtional description 01 the lal18ualP!. The system uses com­

binators which becOfne the -inslNctionsw 01the machine.

4.5.	 Memory hieruchy

4.5.1. Rezitters

AlthouBh not explicitly stated, this wen has assumed a simple model 01memory hierar­

chies. FOf example, there are no local retlisters, as commonly found on most machines.

local retlisters are used to hold intermediate results 01computations such as common subex­

pressions. They are used to save time by not stori.. results in the more costly external

memory. It would be possible to introduce retlisters as a side effect 01 functional unit shar­

in8. Such actions are not done in SlU.

The waph coiOfin8 has been useful in retlister allocation b deterrninll18 when le!'ist ­

-spi lli l18- should be done (CAC81). A derivation 01 such an alpithm miJlht be useful fOf

p1annin8 the location 01retlisters on a chip.

4.6.	 ExterNI memory

f'rotp'ams rarely use a small amount 01memory. Any VlSI system that is deslped by a

silicon compiler must plan on usi.. an off chip memory b SOfne (possibly all) applications.

As it stands now, S1u is not C08/lizant 01any notion 01off chip memory. This is because the

time-space tradeoffs 01801118 on and off chip can be done usI.. the existil18 methodoIotw 01

search and evaluation. In particular, the use 01an external memory offers the space cost 01

just the drivers and 1000ic, not the memory array. likewise, the time penalty is the cost 01

8Oin8 off chip plus the memory access time. Both 01 these parameters can be easily

expressed 8iven the existil18 descriptive mechanism. As an example 01 this, Appendix C has

a linked list set implementation that uses external memory.

However, Ihere's more to the problem. What happens when two Of more operatOf

implementations use an external memory array' This is similar to the prob/erns faced by mul­

tiprocesSOf access to memory. There are basically two solutions:

89 88

(1)	 Divide the memory into two, either by separating the memories or by using mapping.

(2)	 "Synchronize" the algorithms used by the implementations so that they cooperate (for

example, by sharing memory allocator5),

4.7.	 TiminI-n

Unfortunately, SW lacks a aood timing mei15Urement subsy5lem. This was 5trictly due

to the amount of effort spent in describing and analyzing the timing of the seneraled circuits.

As it standsnow, SW adds up the "dNy" times that are specified as part of each implementa­

tion specification. This should be replaced with a timing analysis subsystem that uses such

measurements as the delay from stalement to statement or the delay of a loop. System5 like

thole described by Cohen and ZUCkerman [Col) or Ramshaw [Ram791 could be extended to

CCM!l' such timing calculations. A complex timing analysis subsy5lem should be part of any

future silicon compiler.

4.8.	 Makhinl cOflllJUUtion rates

Little mention has been made of the problemof differing computation rates, particularly

with pipelined implementations. When two implementations are connected and they have

different periods (not delays), then lOme attempt must be made to match the difference. T~

ally, queues and caches are introduced to toIve these differences. A truly complete system

would automatically introduce such intedaces.

4.9.	 Typesandtypeaton

An underlying current of this work has been the use of types in Very High Level

Ianguaae desi8l1. Specifically, recall that the ~ta flow graph matcher uses mode typing as

part of the matching procedure. This enforces the notion that the implementation of data is

divided by type.

However, there are many shortcominp and the solution is noc immediately obvious. In

particular, consider the problem of type senerators (AlGOL 68 calls them "type con5truCt0r5")

for the seneric data type "set". An example of the usqe of such a con5tnJctor would be a

"set of integen" or a "set 01 floats". Slu attempca to match an implementation 01a data type

with a module that implements that data type. Thlt is Icnown as a "one step refinement."

Unfortunately, this makes the de5ipers task harder - the designer must create a new module

for every new typel A better scheme would be the use of type senerators (con5truCt0r5) ­

unfortunately this is very hard. The difficulty lies in the creation of a circuit that can be

extended across differing base types (for example, useful for both inteser'5 and floats).

4.10.	 Makin, the desi... debupbIe ... tembIe

Programs seldom work the first time; unfortunately, digital circuits aren't much different.

Therefore, some provision should be made for the insertion of hardware that makes the lest·

ing and debuUing of a desi8l1 easier. While possibly noc a standard option, these additions

should be available if the user requests them.

Sproull and Frank [FrS811 have an CM!l'Yiew of lOme techniques that could be used by a

silicon compiler as _II as a circuit designer. Also, Williams and Parker [WiPBJI have a

review of desi8l1techniques that increase the Ie5tability of VLSI desi8l1.

5. Conclusion

This work is one step toward the ultimate goal of a system that compiles a program to a

description 01 an intesraled circuit. This goal has been achieved by using techniques from

Artificial Intelliaence and conventional compiler theory and practice. The work reported in

this thesis has shown that:

•	 Compiler techniques can be used to senerale machines for VlSI implementation from

programs

90

•	 Very High Level Languages can be used to hide the implementation complexity of VLSI

design

•	 Constraint methods are useful and applicable to the VLSI problem domain

•	 Heuristic search and constraints can be successfully used to choose implementations

with differing costs

•	 Resource constraints can be used to control the optimization 01 the design by calling

specialized code

"y"", mind i. #i/I«I with new idNs. M.Jr.• 01rhftn"

Appendix A

Flow Analysis Technique

1.	 Introcluction to flow .aIysis

The use 01 flow analysis in compilers Is quilie convnon. Flow analysis can be divided

into two parts: control flow and data flow analysis. Control flow analysis is conc:emed with

how the lJIOlVam (or more precisely the propam COUnll!r) chanIes from ·stalIemerit to state­

ment. Data flow analysis Is concerned with how data flows from variable to variable.

In the past decade, there has been a considerable body 01 literature published that

exposes the more theoretical nature 01 data flow analysis (includi"l its intimalie connection

with lattice theory (Kil7l)). An Introduction to the use 01 flow analysis In compilers can be

found in Aho and Ullman (AhU77J, Kennedy (Kena1) has a fine overview 01 the exlsti"l

techniques.

To review briefly, dataflow analysis can be divided Into two call!pies: high leveland

low level. High level analysis begins with a pane tree or some other-high level- representa­

tion. Low level analysis uses -lower- level representations such as connection matrices.

The output 01 either form 01 analysis is a low level structure such as a matrix 01

USEIDEF bits.

91

92	 93

There are, however, limitations on the present collection of flow analysis techniques.

First, they are strongly languase dependent. There his been limited work done on making

these techniques table driven. Donzeau-Goute's ID0n8I) work on senerating data flow from

denoulional semantics is a fil'lt iIeP. Second, !he output of flow analysis is senerally used

for optimization, not for !he ,eneration of !he data path section of a machine.

The Row analysis technique described here was created to solve these two problems.

The analysis procedure accepts a description of !he control and data Row "equations" for

each lefthand side of a production in !he lanauqe lVammar. Uch "equation" uses !he parse

tree of !he input prQII'am as a source of data and control. The final output of !he procedure

are !he control and data Row graphs for !he input prQII'am.

2. A delcription of thetechnique

2.1. Introduction

The analysis technique Is a CONUUCtive one, that is, !he graphs are constJucted incre­

mentally as the analysis proceeds. The IV" is synthesized by a IV" interpreter that inter­

prets a special lanauqe desiped for Row analysis. This JansuaIe will be described furlher

in section 2.4.

2.2.	 Control ftow ftow: diffennceI-.uantieI

At first glance, there appears to be Iltde difflnnc:e between a control Row IV" and a

data Row paph. They both are dlrectlld graphs, pouibly with cycles and they both have

nodes with muhiple edees leadina in andout. HoweYef, there are a number of subde differ­

ences that will arise when !he actual interpreter is implemented. These differences will be

apparent as !he primitives • !he various are discuued In section 2.4.

2.3.	 The IMsic idN

The basic idea behind !he Row analysis IeChnique is to use a IV" lVammar to con­

struct!he flow lVaphs. This is similar in spirit to kennedy, Farrow and Zucconi IFk(76) who

used a IV" lVammar to analyze a restricted set of flow graphs. The primitives of !he IV"

langu. are !he rerminals of !he languaae. The stack of !he interpreter acts in much !he

same fashion as !he stack of a parser. The interpreter is directlld to interpret new btanches of

!he parse tree by primitives in !he Ianguaae.

2.4.	 Primitives

There are IS primitives; some of them are restricted to control Row and some are res­

tricted to data flow. The indeoendenl primitives are:

• Attach-head <expressionI > <ellpre55ion2>
Forses a connection between two nodes. This is !he fundamental primitive for
formins Iinb. This returns !he first expression (nadel).

• Attach-tail <ellpre55ionI> <ellpre55ion2>
This is similar to attae~, but returns !he result of evaluatina !he second expres­
sion (expression2).

• Follow	 <expression>
is !he mechanism that introduces the Row of control; (oI1ow needs a field of !he
parse tree to pursue, i.e., ((oI1ow car) says to recursively call !he inlerpretler with
!he car of !he parse tree.

• Loop	 <expression>
begins a loop. Each loop his a body wflich is !he (oIlowing ellpre55ion.

•	 Loopback .
is a way to create an arc back to !he IINrest loop. Nearest means that loops are
kept in stack order. Note that this eliminales namina. but at a cost: iUbitrary exits
and loops from loops are not permitllld.

The next sectiondiscusses !he primitives specifIC to data Row analysis.

• Do <expression> ... <expression>
is similar to !he AlGOL-60 BEGIN ... END pairs; IeChnically it is not needed • it is
mainly a syntactic device.

•	 Nodel <label> <node name> <symbol table>
is used to search symbol tables; if !he nade is not in !he table, then !he nade is
created and inserted In !he table. The first field is !he label to be given to !he
node. The second field name name to be searched for or created. The third and

95 94

last field is the name of the symbol table. This permits multiple symbol tables.

• Nodel ..::ldbel>	 <node name> <symbol table>
is identical to Nodel except that nodes are created without being looked up. This
creates multiple nodes for a given name. This would be used for the creation of in­
terior nodes in the data flow graph.

The following are the primitives that are specific to control flow analysis. They are:

• Enter <expression> •
returns the name 01 the entering node 01 the expression, i.e., the node without a
predecessor. This Is possible because each control flow node has a link both for­
ward and backward. Enter chases the backward links until the field is NIL.

• Exit <expression>

• Exits <expression>
are two versions 01the same primitive. Exits returns the list 01multiple exits given
a single node. An exit is defined as a node without successors. Exit is similar but
retums only one node. Ifmore than one exit is possible a bug trap is called.

• Fork <name> <success> <failure>
creates a node with the name <name> and two exits; a ·success· exit and a
·failure" exit.

• Join <name> <expression> ... <expression>
joins toaether a collection 01 nodes into a .- JOIN node (with the name
<name».

• Node: <name>

• Follow: <expression>
These are the links between control flow and data flow analysis. Node: creates a
node with the name <name> and then transfers control to the data flow analysis
routines. When the data flow analysis is completed, control returns to the expres­
sion that called the Node:. Follow: is identical to Node: except that a new control
node is not created. Note that these commands are needed to ·synchronize· the
control flow and data flow analysis routines. In particular, the data flow nodes
must have the control flow nodes that were ·active· when the nodes were generat­
ed. This is used by the microcode generator described in Chapter S.

2.5.	 Power of the method

The data flow analysis and control flow analysis methods described here are powerful

enough to handle the demands of , restricted set of ·realistic· languages. The control flow

analysis routine is limited by the loop and loopback nodes. Although not implemented, a

loop.o..-rd primitive would be possible and would extend the generative power of the

technique to cover loops with arbitrary exits.

Although somewhat limited, this method is powerful enough to cover the ·structured

flow graphs· (a subset 01 the ·semi-structured flow graphs· of Farrow, et al. IFKZ7611 of

BOhm and Jacobini I80J66I. Of course, the addition 01 the loopback primitive extends the

range of graphs generated. A loopforward primitive would extend the class further.

3. Example

Consider the example of a while statement. The control flow specification for this

statement (in YASLI is as follows:

(whilestate.ent
(

(loop
(attach

(follow eadr-)
(fork TI3T

(enter (loopbacll: (edt (follow cddadr))))

(node GUT)
)

)

Here, the cadr branch of the parse tree is the boolean expression, while the cddadr branch of

the same tree is the top node of the statement. Noee how the enter and exit primitives

are used to get both the top and bottom nodes, respectively. Also, note how the loop and

loopback pri.itives are used to set tbe loopi... of tbe while etat-.t.

4.	 Conclusion

The method described heremet all the pis set before IS described in the first section.

It is language independent, simple and reasonable efficient. However, there are some

interesting new directions:

(1)	 Is it possible to automatically generate the ·equations· given the definition of the

semantics of the language (such IS denotational semanticsll The answer is probably

yes, but the work remains to be done.

96

(2)	 Exactly how efficient is this methodl In terms 01 space, this method clearly uses a fair

amount 01 space (mostly on the stack). In terms 01 time, the method is relatively sim­

ple. An exact measurement or calculation would be interesting.

.I.H~ rout boll MId ".wI 011 firm If04JI'If'

Appendix B

Library format

1.	 Introduction

The libraries for both YASL and CLASP are specified by giving a definition 01 each

module in the library. The module definitions have two pam. The first part contains the

specifications that are seneric to the module (such as pCll't declarations and resources con­

sumed). The second part contains the various pararneten 01 the control section dependent

"pam". Both01 these sections are discussed next.

2.	 Generic definitions

The generic section 01 a module definition contains eight subsections. It begins with

the declaration 01 the parameters 01 the module. These are the parameters that are bound

during the binding process. For e~, the width 01 a bit vector set representation can be

declared as follows:

(variable bitWidthl

The next two declarations declare pCll'tS to be either input and/or output pCll'tS. (Note that irs

quite possible that a pCll't is bidirectional and hence can be labeled as both input and output).

The name 01 the pCll't must be followed by the width 01 the pCll't. So,

(inputs (inputPortNlme bi tWidth))

97

98 99

(outputs (outputPortName bitWidth))

Next, if a port is to be connected to the control store, then it must be declared as a control

port. The declaration looks as follows:

(control (controlPor~ bitWidth))

After declarina the pom, the properties of the ports must be declared. These are the

properties that are needed for port constraint propaption. The followin8 declaration declares

"inputPortNarne" to have "parallel infeler 2s<omplement" properties:

(propertiea (inputPor~ parallel inteller 2a-~Ie.ent))

Lastly, the seneric declarations must state the resources consumed by the implementa­

tion. Currendy, the resources are limited to _, time and power. What follows is a sample

declaration for a module with a width of bitWidth (declared by the parameter section

described above), a heiBht of 20 lambda and an overhead of bitWidth • 5 lambda. (All area

and tensth metria are BIven In Iambdl which is the minimum feature size (MeC781l. The

time is liven in nanoseconds. Noee that thete are two time parameters: delay and period.

Thepower fiSUre is liven in mil/iwalls.

(ar. (width bitWidth)
(heipt 20)
(overhead (ti_a bitWidth 5)))

(ti_ (delay (lookup delay))
(period))

(P<N8r (ti_a bitWidth 100))

3. Function tpedfk: declarations

Each module may have several functions. These functions are specifed by declarina

five parts. The first part declares the "name" of the function. The second part declares the

control sianal bindinp that cause the function to be performed. For example, if the control

port "operation" is bound to a two, then thedeclaration would be:

(control (operation 2))

The third part is critical to the operation of the system. This is the declaration of the

data flow .aph to be matched with thedata flow .aph of the input Pf08I'am. The form of

the...aph to be matched is identical to thedescription of thedata flow .aphs (see the appen­

dill on data now ...aph seneration for more details) except for a few details. In particular, it

is necessary to identify theports of the...aph. Theother cha,. requires that when nodes are

matched, types are matched also (if a type field exists). For example, consider a port that is

also a node. This node can have a type to match as well. The followina example dem0n­

strates both these features.

(port inputPort (node IDDfTIFIDl SEI' Ufl'II]Dl))

This is a sinste node ...aph with the type "set of Intf!Ier" attached to the node, which is in

tum named "inputPort".

The next declaration declares the timina parameters for the function. This is because

each function may have differina timina parameters. Noee that thIs can ~ a prob/em

when the timinl parameters of a module's functions differ. The final part of a definition is

the bindina fields. Bindins is described fully In Chapter .4. Briefly, the form of a bindina

declaration is as follows: The first field is the name of the variable to be bound. The second

field is the name of the port to lookupthe property whole field will be bound to the variable.

The third field is the name of the property and lastly, the fourth field is the optional interpre­

tation function. For example, thedeclaration:

(aet8ize inputPort aize)

will bind the variable "setSize" to the size field of the node that is matched to the port called

"InputPort". All example of a bindina function with an inlefpretation function is liven below:

(bitWidth inputPort raDIle raDIle-aize-in-bita)

101 100

Here, range-size-in-bits is a function that returns the lOS (base 2) of the ceiling of the range of

bits.

4. libruy Iynw

The BKkus-Naur form (BNf) fOf the library follows below:

library ::=

name components

components ::=

name (NAME fields) components

nil

name ::=

IDENTlfER

fields ::'"'

(VARIABLE parameterlist)

(OUTPUTS portlist)

(INPUTS portList)

(PROPERTIES propertyList)

(AREA areaList)

(TIME tlmeList I

(POWER expression)

(PARTS partsList)

parameterlist :: ­

IDENTIfiER id-list

nil

id-Iist ::-

IDENTifiER id-Iisr

id-Iisr ::'"'

• id-list

nil

portlist ::""

(port-name width) portlist

nil

port-name ::=

IDENTIfiER

width ::""
NUMIJER

IDENTIfiER

propertylist :: ­
(signal-name properties)

signal-name ::=

IDENTIfiER

properties :: ­
property-name properties

nil

property-name :: ­

IDENTIfiER

areallst :: ­

(WIDTH expression) areaList

(HEIGHT expression) areaList

(OVERHEAD expression) areaList

nil

timeList :::

(DELAY expression) timeList

(TIME expression) timeList

(PERIOD expression) timeList

nil

partsList ::=

(part-name partList) partsList

nil

part-name ::'"'

IDENTIfiER

partList:::

(CONTROL signalList) partList

(GRAPH graphDescription) partList

(TIMING timeList) partList

(BINDbindList) partList

nil

bindList :::
(parameter-id port-id property-spec

property-interpretation-function) bindList
nil

parameter-id ::=
IDENTIfiER

port-id ::'"'
IDENTIfiER

property-interpretation-function :: ­
IDENTIfiER

property-spec ::=
property-name
(fiRST property-name)
(SECONDproperty-name)
(THIRD property-name)

property-name ::'"'
IDENTIfiER

expression :: ­
$-expression

103

·rlM! n;fJ/ttI;~ is fa I'OU-

Appendix C

Yet Another Set Language

1.	 Introduction

YASL is another set lanpaae. It Is descended from VERS2 IEar741 and SEll ISch5)). It

differsfrom SElL siB"iflCantly In that It does not have all the trappinss 01a full set theory (in

particular, the notions 01 mappinss and functions). It also lacks the relational power 01

VERS2. However, the lanauqe has a full complement 01 set operators, includllll existential

and unlYeBlI quantifiers. Unlike SElL, YASL Is a statically typed lansuaae (I.e., types are

decided at compile time).

YASL prosrams resembleprosrams written in "conventional" alpithmlc languases such

as ALGOl.-60: Thedata type declarations 0I1he variables come first and the body 01the pro­

I"am follows.

The next section informally discusses the syntax and semantics 01 YASL. Following the

description 01 YASL, the library Is Included. This Is the actual library used by the demonstra­

tion pI'OII'am. Lastly, this appendix concludes with the transcript 01 the example pI'OII'am

(shown in figure 1.11. being compiled by the sY*"'.

2.	 Detcription

2.1.	 Introduction

The syntax 01 YASL is described In the next two sections using Backus-Naur Form

(BNF). The reader unfamiliarwith this should consult IAhU771 for an explanation. All lenni­

nals are In upper case; non-lennlnals are in lower case. Each separate line Is a production.

The symbol "nil" indicates an empty (epsilon) production. These productions match the next

token under all conditions.

2.2.	 1.e.b1lnput

The input to the parser comes from the sanner. The scanner has some simple rules for

scanning tokens. These are detailed below:

(1) Identifiers are scanned by detI!ctll1ll an Initialalphabetic (a-z, A-I). This is followed by

an arbitrary strilll 01alphanumerics (a-z,A-Z,0.9).

(2)	 The number scanner assumes that all numbers are Inlellers. While this doesn't imple­

ment the full YASL lansuaae, it was suffICient for the demonstration prosram.

(3)	 The operators and delimillers 01YASL are composed 01special characters.

(4)	 YASL uses the MESA IMMS791 comment 1Iy1e: anythllll beyond a double hyphen (-) Is

Isnored until the end 01the line.

2.3.	 Declarations ... toope ruIeI

All the variables in the lJI'OlP'am must be declared. If a variable is not declared, !hen

the selection phase will be unable to find any Implementations that ·cCMr" the variable since

the selection phase depends uses type Information to separate the Implementations. (For

further informationon the use 01 type Information, see Chapter 4).

102

104 105

Unlike AlGOl-60 ~nd its deriv~tives, YASt does nor have scopinB rules. This strictly

due to the amount at effort expended in constructinB the symbol tmIes. There is nodlins

inherent in the IKk at scopins (excepllaziness).

2.4. Dedu.tionI

YASL declar~s serve two purposes: first, they specify the type at the v~riables. The

second purpose is to Bive hints liD the sysll!m about various parameters, such u the size at

sets ~nd the ranp at inteaers.

declaration :: ­

aetDeclaraUon

tupleDeclaration

int.,eroeclaraUon

floatDeclaration

characterDeclaration

inte,erDeclaraUon :: ­
II'fl'DlDl opUonalRan8e : idLiat

floatDeclaraUon :: ­
n.aAT opUonalRan8e : idLiat

characteroeclaration II ­

atARAC1'Dl : idLiat

opUonalBize :: ­
WI'DI BIZE J«MIIB

nil

opUonalRan8e :: ­
WI'DI IWIlI: Bl:IlllEl'l""'......,..- t«.-a AM) ...-.

ail

Besides basic type dec~. declarationl can abo be used to Bive hints to the selec­

tion SyslII!mabout the size at the varloui eIemeftb.

Here ~ someexamples at declarations usi.. the basic types:

inte,er with ranse between 0 and 100 I x,

float : z, -- No hinta iD thia one I

2.4.1. Set mel tuple types

The declar~tion at sets ~nd luples use the basic types u subtypes. The synlilX at set

~nd tuple decl~r~tions ~re u follows:

setDeclaration :: ­
SET optionalSize or declaration

tupleDeclaration :: ­
nJPLE opUonslSize or declaraUon

optionslSize :: ­
WI'DI BIZE ...-.

nil

optionalRan8e :: ­
WI'DI IWIlI: BI:IVIDI Nl.MIIJl AND foUIBIB

nil

Examples atlhese decl~r.ions are:

set with size 100 of inte,er with ranse between 0 and 100 : x,

set of float : y, -- No hinta in this one either!

aet with aize 10 of inteaer : z, -- the ranse ia urmno.n

2.5. ExpreuionI

Expressions in YASL resemble expressions in other ·~I...ithmic· IanBuages, includinB

the set l~nBLJ'1ge5 mentioned in the introduction. They ~ composed at ~tors (such u

the well known ~thematial oper~) ~nd operands. A1thoush oper~tors have precedence

rel~tions, parenlhesises an be used liD order the ev~luation at comptMtions.

2.5.1. Operandi

Since oper~tors oper~te on operartds, it ~ sense liD discuss the oper~ at YASL

first. The operands ~ the II!nniMI symbols at the YASt ararnmar. There ~ two types at

oper~nds; sc~l~r oper~nds and set operartds. The sular operands ~ numbers and identif­

iers. Set oper~nds ~re constructed by explicit set constant oper~tors such u the set fonner or

tuple former. The foIlowins ~re examples at bodl types at operands:

y (variable)

5 (.....r)

107 106

{ 1,2,3 } (set fOlW!rl

I 2 •• 5 J (tuple fOlW!rl

2.5.2. Oper~ton

Operators of VASL have a built-in precedence which is determined by the ordering of

the operator symbol in the VASL grammar. Operators can be divided into four classes

according to their semantics. Theseare:

2.5.2.1. I.oIiaI operators

The logical operators of VASL are the familiar logical operators: AM) , (B and NOT.

Theyare (respectivoelYI, logical disjunction, logical conjunction and logical neption.

2.5.2.2. RNtionaI operalon

The relational operators of VASLyield boolean results, and hence can be used with log­

Ical operators. The various symbol. and their relations are as follows:

symbol relation

MIN minimum

MAX maximum

< leu than

<- leu than or equal to

equal to

>­ lleater than or equal to

> sreatl!r than

<> not equal
-. not equal

SUBSET Is a subset of .

IN contained in .

2.5.2.3. Arithmetic operators

Apln, the arithmetic operators of VASL are Identical to the operators in most alp

rithmic langwlll!S.

They are:

IyIIIboI opntIIOr

+ Addition, Set union
Subtraction. Set inteneetion

- Multiplication
Division

These operators are used on numeric types such as n.oAT and IJIrI'IDIJl. The set types

have different meanings for these operators. Theseare detailed in the next section.

2.5.2.4. set oper.......

As mentioned in the section above, the arithmetic operaIDrS take on a different meaninl

for set types. Theseare:

+ ,UNION Set union
Set difference

-,INTERSECT Set IntII!rseCtion
I Symmetric set diffel'ence
WITH Set addition
LESS Set subcraetion

Here are examples of all of the operators In action:

a c b
NOTcINd
• - I 1.2.8 I
(a >- 10) AM) (a c 20)
1 IN { 1 •• 5 }
{ z 8UaI THAT z IN • }

2.6. S...eme....

With the ellception of the asslsnment and label statl!ml!nts, statements in VASL are used

to alter the control flow. The syntax for stall!melltS is as follows:

realStat-.t :: ­
c~tat-.t

forstat-.t
whileStat-.t
forsllStat-.t

108	 109

e:d8t8Stat~t

itStat~t

888i,...,ntStat~t

labelstat~t

2.6.1.	 Compound1J

Compound salementS ale a throwback to AlGOl-60; the BlXJIN denotes the the

besinnina of a sequence of saliemenlS. The 1M) denotes that the sequence h.ls ended.

Unlike AlGOL-60, BlXJIN 1M) pairs do no« introduce a new Iexiul scopina environment.

This was discus5ed in the section 3 of this chapler.

2.6.2.	 Allipmenl lUI""'"

AssipmenlS are simple. The synt.ax is:

8881sn-entstat-.nt :: - II8I1"IFIIB ; - ezpre8810n

2.6.3.	 a..beII

Labels were introduced into the synt.ax of YASl to name points in the prosrillll. These

names were to be used in specifyina timina requirements. A typiul use would be to specify

the time between two labels to be less than tome performance requirement. The syntax is as

follows:

labelStat-.nt :: - (II8I1"IrIIB) 8ta~t

2.6.4.	 for iUtemenlJ

The YASl FOR statement is sisniflCMllly different from the usual .,. satement. First,

the satement does not assume that one variable is soina to be set. Second, multiple assian­

ments are permitted in the body (normally a sin&le limit and increment is propmed). The

limit for the loop is a filllliliar boolean expression. The initial multiple assianments are done

belate enterina the body of the loop (the initialiDtion 1Iiep). Next, the boolean expression is

eval~ted. Next, the body of the loop is performed, followed by the next set of multiple

assisnmems. FoUowina these assianmerns, conIroI returns to the lOp of the loop. The syntax

is:

torstat~t ::.

.,. -..1tipleA88i,...,nt8 'I1tDI -..1tipleA88isr-nt8

tolCondi tion boo1ean1:lq1reuion DO .tat-.nt

-..ltipleA88isn-ent8 :: ­

a88isn-entStat.-ent -..1tip1eA881.-tTall

-..ltlpleA88i,...,ntTail :: ­

• -..ltlpl eA88 isn-ent8

nil

torcondi tion :: ­

WHIU

lIft'lL

Examples 01this are found below:

.,. 1 :- O. j :- 1 'I1tDI 1 :- 1 + 1 lIft'lL 1 > 10 DO .••

.,. It :- 0 'I1tDI It :- It + 2. k2 :- It WHILI: It c 100 DO •••

2.6.5. While iUlementI

The while satement is identical to the AlGOL-60 while stU!ment; the boolean expres­

sion is evaluated before enterina the body of the loop; the body is eval~ted and control

returns to the boolean expn!S5ion. The loop is exiled when the boolean expression 10ft

false.	 Thesyntax is:

whilestate.ent :: ­
WHILE booleanJ:qlre881on DO 8ta~t

2.6.6. If utemenlJ

The	 IF sr.tement is identical to IIlO5l other IF staIements (BCPl IRiW80J excepb!d).

like the AlGOL-60 IF statement, this IF sr.tement suffers from the "danalina else" syntactic

problem. This is resolved in favor of the nearest else. The exact syntax is:

ltstat.-ent :: ­
IF booleanl:llpre88ion 'I1tDI 8tat-.nt itStat~t.

110 111

ifstat-.tt· ::.

I:LSI: atat_t

nil

2.6.7. Quantiflen

The set quantiflen resemble the WHILI: loops in construction. The boolean condition

in the WHILI: statement corresponds with the lieSt 01set inclusion. The syntax 01 the quantif-

Iers is:

forallState.ent ::.

nBALL IDINI'lrlIK IN aetl:Kpreaaion DO atat-.tt

exiataStat.-ent ::.

EXIS'l'B IllDITlrllK IN aetl:Kpreaaion DO atat-..t

2.7. Milcellaneous

Each propanl must bealn wIttt a fRO(IWI identifier. This is mainly to provide some

identification 01 the propam 0UlSIde 01 comments. Alter declan.. the propam name, the

PftIII'anl Is consuucted usi.. statements. StaRments come in two varieties: declarations and

WrealW stafIl!ment:I, l.e., statI!ments with actions. These were discussed in the previous sec­

tlons.

proer- ::.

PROaRAII IllDITlrllK ata~ta IN)

atat.-enta ::.

atat.-nt ata~ta.

atat-..ta· ::.

; atat-.tta

nil

atat.-ent ::.

declaration

realStat-.tt

3. SynIH (BNF)

This is the complete lVanlmar for YASL:

..............
.......-....

PROGRAM IUNTIFIER _ EN£; .

..•-._....
;­_nil ..•
declarlllan
_I~

dect.Mion ..•
setOec......
lupleDec......
inIIIerf)ec......

Ro.lOec

characl!rOeclarlllan

reoIStaIemenI ..•
~
forSUIemenc
whlle~

forall~

exlstss-­
~

~

~

oetDeclarlllan ::.
SET opllonalSlze Of decIarIIIan

tupleOec....... ::.
TUPU oplicJNlSla Of dKlarIIIan

inIIIerf)eclarlllan ::.
INTEGER ~: IdUIl

floIlDeclarlllan ::.
FlOo\T~ : IdUIl

eta.racI!rOec...... ::.
CHARACTER: IdUIl
~ ..•

Wl1H SIZE. NUMIlER

nil

optioNJllanIIt ::.
WITHItANG(IlE1WEEN NUMlIER AND NUMIlER
nil .._.__._~ ---..•
BEGIN_END......-~_ .. ::.
IDENTIFIER :. eIqIleIIlon
~ ..•

(IDENTIFIER I _
as-...... ::.

fOR~THENIl'lIIIIp""'''''bCandlllon~OO''''''
~ ..•
~ 1IIll1tipleAll9•••llTeII

IIIll~Tall::·

.1IIll~
nil

forCondiIIon ..•
WHILE
UNTIl

....i~::·

WHIlE~OO_

foran~::·
FOlW.l forall~ariable

forall~ariable::.
IDENTIFIER IN tel£~ foraIl~uaIllier foraIlSI*melllllody

forall~uaIifler ::.
SUCHTHAT~

nil

http:atat-.tta
http:atat-.tt

l'i~lt·~,·vr¢:'Ji~i·[lll.tllll~I~~.~tlt'iflltttl·ilf·1811.~I~I·it81[

"~'i ~ "" £I'I!t I hit' I',H' 1',,1 ~l''- I

. (

--N

-

1.0>­

115-154
114

"~
~1Il" Pages 11S to 1S4 were omitted from the technical report edition due to cost considerations.

~1Il":: •
• ~iIl

Copies of these pages can be obtained either from the Xerox University Microfilm edition ornil.-..__
....-.---_ ...
..

~~1Il" directly from the author.
~".

NUMIIER
idlJII ...

IDENTIfIER ldl.iIr
ldI.iIl" ::•

• idlJII
nil

156

·Yow inIuirion ;s uce41ent bill ~ viewpoinl could be Ire/pIvf'

Appendix D

Digital signal processing Languages

1.	 Introduction

Oigigl signal proce55ing is an interesti"l domain lor both hardware and lansuaae

design. This is due, in ~rt, to the different properties 01 digigl signal processing algorithms.

In particular, digigl sipl processi"l alsorithms have some 01 the following features:

•	 performance criteria

Thereare many typIt 01 performance criteria lor digigl signal processing. For example,

filters have bands, Q, noise Iimi15 andocher specifications. Transforms also have Iimi15

on performance, particularfy speed and time limi15. These are useful criteria for

automatic selection.

• appIicalive natule

An ·applicative nature- is a loose term thai means (in this context) a lack 01 side effects

and the ability to cascade (pipeline) functions. Also, this means that the algorithms are

not tied to sgte lransitions.

• ~allel functions

Digigl signal processins alsorithms often have functions that can be perfo.med in p;aral­

lei. This is ~ularty lrue since (as Slated above) many alpithms lack side effects.

• varyill8 arithmetic forma15

Oigigl signal processing often involves the use 01 different arithmetic representations

due to differing demands for precision, noise and ocher performance p;arameters.

There are several different levels to look at digital signal proce55ing. One level is at the

level 01 individual samples (from an analos to digiQl converter). This can be called the si,­

m" level. Examples 01 signal level processilll are the computation 01 filters, lransforms and

similar direct data manipulation. Another hiBher level is concerned with algorithms; how to

fit the functions at the signal level toeether to perform a task. This can be called the .,....

level.

The history 01 lansuases lor digigl signal processilll dares back to earlier days 01 com­

putill8. BLDOI IKar6SI, for elWllple, was an early block di.....am compiler. Unfortunately,

such languaps lack the power to handle such alsorithms as the Fast Fourier Transform.

Recently, there has been work on appIyins data abstraction and typi"l mechanisms to

digigl signal processilll. GethOeffer IGet80I gives a sketch 01 a lanaua,e (SIPROl) thai has

some dag abstraction capability in it. (A PASCAL-like lansuase with a few added types).

Kopec's thesis IKopBOI is a much ITlOle complete description 01 how CLU ILAMall can be

extended through judicious use 01 data abstraction to cover both the signal and sy5ll!m

aspects 01 digigl signal processilll.

However, both Kopec and Geth6efter deal with types 01 a high level but not at a wry

high level. It. very high level speciflCalion does not deal with the sampled dag but rather at

the level 01 connecting functions without knowing the underlyilll implementation.

2. A delcription of ClASP

CLASp· was designed to handle the module to module level 01 description 01 digigl sig­

nal processing functions. Here, the modules perform fairfy high level functions such as

I Complex ~ lor AIIdlnI SIplII "-lnI-

ISS

156 157

filtering and transforms, not low level functions such as resisters (delay).

Much 01 the syntactic slructun! for the language was borrowed from the set language

(YASU used in most 01 the thesis. In particular, many 01 the control structures an! similar (if

not identical). Naturally, there an! changes to the data types and some 01 the looping strue­

tures.

1.1.	 Features unique to ClASP

Although siBNI processing alpithms an! varied, there an! two basic slructures: filters

and transforms. The next two sections consider how to expressfiltering and translorm opera-

lions.

1.1.1. filters

Consider the specification 01a filter. A filter has several performance criteria. AmonB

these criteria are bandwidth, quality (Q), sideband noise, roundoff etTOl" and noise. So that

CLASP Is an effective dilital siBNI processing specifiation Ianauaae, it should be able to

express these parametl!fS IS part 01the proaram. Anocher approach miaht be to attach asser­

tions. CLASP takes the view that such assertionsshould be visible and an! part 01the specifi­

cation; IS much as any 0Iher property In the set domain 01 VASL. Filters can either be

declared (in effect becoming a function) or used directly wittlln an expression. Naturally, a

declared filter has constant upper and lower bounds. So, Iowpass filler from DC to A (440

hertz) could be decla.m as

declare filter f~ DC to 440 : Afilter;

• :-	Afilter(input);

or it could just be used In an expression:

a :-	 filter input f~ DC to 440 : arilterTwo

Of course, specifications can be added to the filter just as set declarations can be added

in VASt. Considerthe 1oI1owin8 5aI1lpIe declaration:

filter input fr~ fO-1OOO to fO.1OOO

with passband ripple ~ db and

with stopband attenuation ee db down;

Thecomplete syntax for a filter is as follows:

filterDeclaration :: ­
FILTIR ... COlUltant TO conatant filterSpecs : IDan'IFIDl

filteredEKpression :: ­
FILTIR expression ... ezpreasion TO expression filterDld

filterDid :: ­
filterSpecs filte~

f ilterSpecs ::.
WIm	 filterSpec
nil

filterSpec· :: ­
AM)	 fil terSpecs
nil

fil terSpec :: ­
Q or	 cOlUltant filterSpec-
PASSBAND RIPPU: c:I conatant DB filterSpec·
STOPBAND A'I"l'D«JATIaf c:I conatant DBureSill' filterSpec·

__uresill' :: ­
DOWN
nil

filte~ :: ­
: IDan'IFIDl
nil

Note that the filter specifICatIons are optional but should be specified by the user if the

proper filler is to be selected.

1.1.1. Transforms

Now, consider the use 01a translorm (Fourier, ~ace, Hilbert, etc.). One such exam­

ple occurs in digital mixing where convolution 01 two siBNls is a common operation. This

can expressed in a siBNI processing Ianguaae by translorming the two input sequences

(tuples) into the frequency domain and performing the convolution. This is written in CLASP

as:

160 159

tranafora input-seq fr~ ti.. d~in into frequency d~in;

tranafora envelope-seq fr~ U .. d~in into frequency d~in;

tranafora convolve(input-aeq, envelope-aeq) into tiae ct-in;

Hole lhat the FOUI'ier transform needs complex numbers, therefore complex numbers

mU5t be included in the primitive types 01 CLASP. Hole ~150 that the Discrete Fourier

Tr~5fonn (Dm ~y have irnplernerUtions in silicon that tiIke Ies5 time iU1d ~IU than the

Fast Fourier tr~5form (Fm (FoK79J. Of course, the choice 01 implemen~tion is done

~utomaticallyby the selection phue 01 the compiling sysllem.

In retrospeCt, ~ beaer _an would IYve been to introduce sepuate types for uch

transform domain. Then, the transform would become ~ coercion oper~ between types.

Unfortunately, the demonstr~ system's simple system 01 type decJM~ wouldn't be

able to IYndlethese types. This is, however, suicdy ~ implementition i55Ue.

The synwc 01 ~ transform expressions is:

tranafo~esaion ::.
'1'RANBFOIlII aetl:lEpreaaion tranafo~in IX*AIN

TO tranafo~in IX*AlN
tranafo~in I:.

TIllE

JRDPK:Y

2.1.3. Special iter~tive '01IIII
The I:VDlY ~t is designed to expeu the fundMnen~1 reI~tionship between wn­

piing rate iU1d the length 01 the microprogram. In particular, the I:VDlY st*ment is used in

the outer loop 01 the program 50 that the sampling r~te an be specified. The sampling r~te

is the reciproul 01 the time specified by the -timeMeuurement- part 01 the ~tement.

Unfortunately, the implernerution 01 the I:VDlY ~t is not complete. This is bec~use

the presenI SIU sysllemdoesn't perform ~ detailed timing ~Mlysis, therefon!, it is inupable 01

a1culatlng the Iet'IIh 01 the wait ~ leqUired at end01 the loop. Hole that w~it nodes (in

the control flow graph) are needed when the microprosram is 100 short. Microcode

cornpKtion is needed when the micfOP'08l'am is too Ionsl

everyStatellellt ::.

EVlRY U~surellellt DO ata~t

ti~urellellt ::.

expression ti.eunits

ti8eUnits :: ­

IIIU.ISIDlNDS

lIS

IlIaulSIDlNDS

US

2.1.4.	 FundionI

Most 01 the functions used in ~ digiYl signal proce55ing setting are expressed in CLASP

u functions. This function ailing style Is corwened by the compiler into the proper SUging

01 fu~1 units. This conversion will be di5c~ in the next section.

3.	 Gener~1ion of mKhines fromCLASP IpKlfiutionl

3.1.	 Introduction

The next question is: given ~ CLASP JlftI8/'am, howdoes the compiler convert it to ~

I1liIChinel The ~wer lies in the control iU1d ~ flow aMlysis routines. Since the flow

_lysis routines are table driven, the flow aNIysis for CLASP an (iU1d does) differ from that

01 YASl. But the ~in question ~ins: how to translate the usignment5 iU1d function ulls

into the appropriate connection 01 modules.

3.1.1.	 Functions

For eumple, the CLASP code

~;- b

is tr~sl~ted into the following connection 01 modules

D-EJ

162 161

in exactly the same way that it was implemented for YASl. The CLASP code frasment

((g(x))

is translated into these modules

8----8---GJ

ush,. a very similar technique.

3.2.	 From tpeelficationl to types

As the section on filters noeed, there is a syntactic method for specifyll18 the properties

01 the filter. This can be uted ID Insert the appropri_ values into the type declarations,

much as YASl did. For example, the filter specification In section 2.1.1 can be represented

In the type block for the filter as ((pu.""-ripple 5) (.topbud-attenuation

eel).

3.]. MetrIa

The metrics for the digital signal processIns are difterent from the metrics 01 set

lanauaaes. In partkular, emphasis is placed on the ability to use pipellned components.

Therefcn, a sood metric to use is ATP, whee P is the period 01 the device. Cappello and

Steiglitz (CaSali uted this metric In thetr work on analyzf.. p1pe1ined serial digital signal

proc.essins circuits. The SIlJ Implementation IlleS !he 1liiie metric as YASl, If only because 01

the convenience (and !he lack01 a sood periodicitycalculation).

3.4.~of~-"

Another task that SIlJ doesn't perform is the calculation 01 filter coefficients. This isn't

to say that this subtaskIsn't within SlU's realm 01 expertise - rather that It was omitted for rea­

lOftS 01 time and necessity. However, this brings up an Interestil18 point. Consider the case

01!he example propam - here a filter Is defined In tl!nnS 01 a center frequency with a con­

stant width. Now, the matcher selects a variable filter (as it should) - but should Slu generate

a machine that calculates the coeffkients 01 this filter at -Nntime- (I.e., durins filter opera­

tion) or during compile timel The answer should be obvious - certain filter coefficient cam­

putations are quite extensive, thereforemost. if not all coefficientcalculations should be done

at compile time. But howl In the case 01 the example propam, the center fn!quencies are

stored in a tuple and accessed sequentially from that tuple. The compiler system should be

capable 01 realizins that these frequencies (in the tuple) are constants, and furthennore, that

the tuple can be chanpd from a tuple 01 frequencies to a tuple 01 coeffICients. this Is an

extremely Important -optimization- and should be part 01 any compiler for a very high level

signal processi.. la......

3.5.	 An:hitec:ture MkIOCOdeatimI

3.5.1.	 An:hitec:ture

Because 01 !he Ioopi.. structures, !he default archltectures (I.e., befcn critia) have

multiplexed hardware. For example, !he Implementation 01 !he digital Touch-Tone decoder

(see !he last section) has two loops for !he four filter binds. Therelore, only one filter chain Is

created and is shared over !he four binds. If !he user needs all four filters Implernetded for

speed reasons, this can be specified by an ~ time demand. The -out 01 time- critic

must be prepared ID -unroll- !he loop In much !he same fashion as a conventional compiler

(see (MUm, pp. 471....72).

3.5.1.1.	 Word Ienath effects

While word length In !he machine is dependent on !he prosram (and !he ewntual appli­

cation), there are other side effects. In partkular, word length can effectoverflow and round­

off, which In tum can effect!he noise figures (MuR761.

164 163

3.5.1.2.	 ,.,allel v... Serial udlitec:tures

Like YASL, CLASP doesn't make a committment 10 any 10 any form 01 parallel or serial

architecture. Inrerest in serial architeetun!s for signal processing has been increasing since

Lyon's paper (Ly08l1 (Ly080). He drilWS his inspiration from an earlier paper (now lS yeilrs

old) 01 Jackson, tc.iser and McDonald UICM68). Lyon extended their work by introducing

interface standards between modules andallO using hierarchy in desiBllS. Lyon's serial -phi­

losophy- as seized by a lIfOUP at Edinbu'ih (Den) and used in iI simple silicon compiler

(FIRSTI (Ber81). FIRST uses a fairty fixed placement scheme and a 5ma1l number 01 prede­

fined operators. The FIRST Ianguaee ibelf is a rather simple and low IewI register transfer

languaae. This contrasl5 sharply with CLASP, which ignores placement and routing issues

anduses types 01very high 1ewI. However, note thata tool like FIRST could be used 10 p!flo

erate the lower level cells for CLASP.

3.5.2.	 Mkrocodeation

Because the machine eeneration phase is intimately tied 10 the nocion 01 -data flow ~

data path, control Row ~ control sIOfe-, the machine plfleration 01CLASP proIfams does noc

differ from that 01 the YASL set domain. So, control constructs are translated inlO the conlrol

Row graph and the graph Is used 10 plfler_ the microcode sIOfe. The use 01 microcode for

signal processing machines Is noc new 01course. Allen (A1175) has a review 01 lOme micro­

coded digital signal processing machi... circa 1975. However, there is one -feature- that

should be noted: For real time machille$, the sampling rate is proportional 10the length01the

microstore; speciflQlly. the

sampling rate - 1IIlenglh 01the microslDn! • speed 01the slowest step)

Of course, should the machine have a 5ma1l micro5lOre, then wait states must be used. If the

microslDn! is 100 W1Ie (more often the CiI5e), then saeps must be taken 10compact it. This is

either the job 01 microstore compaction (discussed In arealer detail in chapter 7) or the

critics, which can possibly reduce the speed 01the slowest step.

4. An eumpIe

Using the rouch tone decoder example, the following block diqram will be p!flerated

by Sill:

IcMdoundCf uppdoundCf

bondLlmIl

Input

ouIpuI

Figure D.l Touch tone decoder data flow graph

166 165

s. Conclusion

The CLASP lansuage is sil"ificantly different from past digital signal processing

lansuages. It permits lISen who are naIVe in the desil" of digital signal processing circuits to

specify a desil" that can be automatically constructed. Like the set language YASL, CLASP

depends on an extensive library built usil18 other tools. CLASP also allows the users to treat

dilital signal processinl functions as -black boxes- and ignore the undertyinl implementa­

tions. Of course this is the aim of Very High Level Lansuages such as YASLand CLASPI

6. Synfa (INF)

This is the complete 8J3l1WNr for CLASP:

~::.

MODULE IDENTlfIEIl __END.--..•---.--_;-­....nil ..•
......JIion
~

cIeclanIIon ..-

DEClAItE typeDeclarllllon

IypeOeclarlllon :: ­

aJfIlI*KDecIanIIon
ftUflWIcTYl*

IeIOoclarJlion

IupIeOocIarllllon

fIIIerOedaraIIo

lr-'ormDeclarllllon

compleIIOocIarllllon :: ­

COMPlEX Of -.tcTYl*

numericTypes :: ­

IIoIIOecIarllllon

~
~ ..­
~

forStalement
whl"'~

for~11St.IemenI

.~

ewrvse­
~

~

ldendfter5Iart
~

telDeclarllllon:: ­
S£ToplionII5Ize Of typeDeclarIIIon

tupleOeclarlllon ::-

TUPlE optional5lJe Of typeDeclandon

1neeaerDe<:larIdon ::-
INnGEIl optionalllMlle : idl..

f1oIl0ed.aIIon :: ­
flOAT opIIonalllMlle : idI...

lI_rOed.aIiGn ::-
Filnil FIlOM COIlIlanl TO COIlIlanl fiIIerSpea : IDENTlFU

..........00C1aralion ::-
TllANSFORM fllOM lranIfonnDomaIn DOMAINTO ~ DOMAIN : IDENTlFIEIl

transIonnDomMl .. ­
T1ME
fltfQUENCY

opIIonaISize :: ­
WITH SIZE NUMllfIl
nil

opIIonaIllMlIe :: ­
WITH IlANGE BflWEEN NUMllfIl AND NUMIIElt
nil...-.-.ICI_ .._.........-~ ..

WITH SIZE NUMllfIl
nil

optionaIllMlIe :: ­
WITH IlANGE BflWEEN NUMlIEIl AND NUMIIElt
nil_.__ ...~~--_ .. ­
IlEGIN __END

IdenIJfIeoSIart .. ­
IDENTlflEllldenllflerTail

ldenlIfIerT'" :: ­
~all ,............. ~,... :: ­
:-...-.on
~ ..­
(~

1abeI~::-

(IDENllflER J_
~::-

FOR~ THEN ...iIlIple....,... bCandIIIon bocIIilInElqnMl DO
iilII~::-

~~ail
~T..I:: ­....~- ..

nil
foICondltion :: ­

WHIU

UNlll

WHILE boaleInExpieBIo DO_
1oraI~::-

FOREACH IoraII~arIMJle

for~"~arIMJle ::-
IDENTIfIER IN Ii!IExpieMIan~ ""'-',_idImtw

1oraI1~1fIer:: ­
SUCHTHAT~
nil

for~IISIaIa,..idIodv ::­
DO_

_1IISSCaeement ::.
FORAl.l"'~arIMJle

~arllIbIe::-
IDENllflElllN 1i!IExpieMIan~"ellllS4lE,..1lIIody
.~.. ::­
SUCHTHAT~
nil

...

g;

__

170-235 169

IIUpIeformer
-.e- ..• Pages 170 to 235 were omitted from the technical report edition due to cost considerations. _..... ..
~

PHI
ill ... Copies of these pages can be obtained either from the Xerox University Microfilm edition or

IDENTIFIER optianalCaIl
~I::.

directly from the author.

nil

(pnx:edureUIl

pnx:edureUIl ::.
expmoIon I

Il!tfonnef ..•
IDENTIFIER IN sel£lqnIIIan SUCHTHAT ~
~..
~ ..•
~ 1etCorWMII...

~1Ib::•
.. ~
~..•... ~.

..or nil ..•---
~

.....
~~

IUpIeformer ..•

IDENTIFIER IN.......... SUCHTHAT~
~..

tupleConI&and.l ..•
~~

tupleCanIlanIlI ..•
.. ~--___ .
~...
. ..
~
~
~::.I__ .
--- .
~~
~ ..•
~~

nil ..•~
.. ~

--..u.r
~... ::. .~

nil ..•~

NUMBER
1nII~

Idl.. ::.
IDENTIfIER Idl...

1dl.iII""•
• Idl.Itt

nil

237

"Rely aft 'jOlIIMIIif ~ wMl Ill" IIIinp done"

Appendix E

Programming Vignettes

1.	 IntnJduc:tion

This PIOlIl'am was by far the la,..est LispPIOlIl'am the author had eYef written. In creat­

ing such a PIOlIl'am, the author fousht and won (and lost! several battles. Some 01 these are

recorded below as well as reflections on Lispas a IDol for building experimental systems.

1.	 Global nameIpKe probIemI

As any Lisp user knows, there Is one space for Lisp names: the obIist. Therefore, the

author was YefY eateful eo prefIX each function (and atom) name with the name 01 the file

that the function was written to. F_ variables -e kept to a minimum and the use 01

lambda variables was maximized. Dynamic KOPing was used occasionally, but it makes the

PIOlIl'am harderto read from just the code. Theounce 01prevention (unique names) worked;

not one bug was due to conftictlngnames. Recent Lispsystems have "pacl!aaes" that pennit

the user eo keep these in separ_ addre5S spaces. 01 course, there was only one PIOlIl'atn­

mer, so it was much euier eoawMd conflicts.

3.	 fishtinI with the LiIp Implementation

The particular dialect 01 Lisp that was used for the system (called "Franz Lisp") was

cleMly not desiped with larae system building in mind.'

Pushdown list 0IIeffI0w can result in a sIobal reset - leaving the user (author) bewil­

dered (and anllY) as all the stack stale was IOMI There-e no facilities for doing the kind

01 interroption that SCOPE IMas80I can do. As a result, It was often necessary to prettyprint

one function after another, all the way down the calling hief'archy.

Theauthor will claim here that solid facilities such as tncifl&, breaking and SCOPE-like

interroption facilities are a necessity In any languap when building a larae system. Yet,

YefY few systems have these facilities, especially the so called "alpithmic" languaaes.

4.	 leftec:tionI on "III LiIp

The author's choice 01 Lisp as a system building Ianguqe was motivared by SeYefaI

concerns. First, Lisp removes worries about faulty memory allocation and pointer chasing.

This turned out to be a true plus. Second, the author wanted the ability to radically chanae

Stu if a horrendous diffICulty was uncovered. This happened at Iea5t once and the system

was "tom apart" and reconstructed in the period01about a day and a half. This was also a

plus. Although speed was not an ultimate concern, the speed 01 the il1ll!rpCeter was often

unbNrable during debuging. This was definitelya minus.

ProlJramming in Lisp is definitely different. Sandewall ISan78) has an inll!n!Sting article

about Lisp and Lisp PIOlIl'anvning syslll!mS. One 01 the more inten!5ting facets 01 pIOIl'am­

ming in Lispis building the system from bottom up and from top down simultaneously.

At the advice 01James Allen, the author avoided using so called "hairy datastructures"

by using GENSYM symbols instead 01 creating pointers with CONS. While this introduced

additional complexity (the need to eval the GENSYM names to pt the values), it did reduce

the complexity 01pointer management.

_. I In all Franz w..... IIIport a ... !aile MKIIIp ~.... Maarma. _ IIIbuild MW ~

236

239 236

S. A 1M! of two systems

There were two experimental sysll!ms construetl!d over the course of a year and a half

Of more. The second system turned out to be an almost total rewrite of the first system. FoI­

Iowins the advice of the thesis commitlee, the author's first system had no facilities for pro­

pam analysis. Information about the pnJIP'ams was seneraled by hand by the aulttOf and

Biven to the JIIOlII'am. This provedto be tedious anderror prone. There was also some ques­

tion about what exactly was requiA!d by the COfnpiler. All of these problems were remedied

In the second implementation.

The first system also used a different constraint propaption alpilttm. In particular,

constraints were propapted across the data flow papil until either a constraint conflict

occurred (like a serial path met a parallel path) Of the constraint was already present in a

node (i.e., propaptins the property -serial- into a node already marked -serial-.). This is

clearly WI'OfllJ because the constraints of one selection should not condemn the rest of the

selections to be constrained unless they are all connectIed. This uhimalll!ly pi back to the

notion that constraints represent compatibility between pons. The second system only pro­

paptei constraints aclOSS one arc (to the COl'luected node) In the data flow paph.

The orpnlzation SILl has chanted radically since the first implementation of Slu. In

particular, the strlteBY for aaachins Implementations In the library to nodes In the data flow

Ifaph has become the most complex part of the propam.

Initially (in the first Implementation), this was done by a straisht forward table lookup.

However, this also depended on the operators belns part of the definition of the identlflel5.

This is clearly an unrealistic model. Eventually, a primitive matcher was written. This

matcher suffered from the foIlowlns problem: When a match was made between the library

description and the data flow sraph, a slnsJe record was created (called an Instance). Unfor­

tunately, this doesn't account for modules with differins control sianals that produce different

functions. The next version of the matcher crealed match records that in tum were tied to a

sinlle instance of the library module. This prOYed not only to be a reasonable wale8Y but

also had intuitive appeal.

In the second implementation, data flow and control flow analysis routines started out

beinl entirely separate. This arraneement worted fine until it became time to senerate the

microcode. AJ that time it becameobvious !hat each data flow node needed a list of control

flow nodes that -used- the data flow node. Fortunallely, the fill wu easy. The control flow

Ifarnmar was chanaed to have a construct !hat transferred control to the data flow analysis

routines. The current control flow node was then inserted In any data flow nodes subse­

quently senerated.

In order to senerate estimates for the control store (and the jump multiplelcer), It was

convenient to senerate a flow node. This is desirable because it permits all the standard

mechanisms of bindi.. metrics and critics to be applied to the new selection. The IIl!fleI'a­

tion of these new nodes turns out to be relatively !ltraisht forward. FIrst. a special data flow

node is crealed with a property list !hat can be bound by the bindl,. procedure usi,. the

library's representation for the Implementation. Next. a rnaII:h node II created (without caJ·

Iins the matcher) estabIishins a pseudcHnatch between the Implementation and the newdata

flow node. The next to last seep is the crellion of an Instance !hat ties the match to the

library Implementation. The final seep II to call the binder, which proceeds smoothly from

this point on.

6.	 The implement.ltion of critia

Halfway throush the implementation of the second Sysll!m, it became appaA!f'lt that

contelltS would be requiA!d to implement the critics. The reason is as follows: since the cri­

tics chanse the data flow 1IfiPh, there must be a mechanism to chanse the data flow srapil

without effectins the other nodes (stales) in the search tree. A conteld system like that used

241 240

in Conniver IMcS721 would have been just ript here.

7.	 Debugins the library

Unfortunately, debuuilll the library specifICation turned out to be an extremely enor

prone and time consumilll operation. Misspellinll5 and improper &rapt! descripCions would

oflIen nee appear until late in the session. Since the prosram can take hours to run (intel'pre­

tively), this was lilerally a waste 01 time. The solution would be to write a specification

checker. Such a checker should Ioolc for undeclared names (and functions). Such a system

would save eMYs 01 debullilll time.

8.	 Specifiation 01dediraliont

Perhaps the most lanauqe dependent part 01 SILl was the specifICation for the declara­

tions. Declarations were done by walkinl the pane Iree left to risht and callinl a function

for specifIC nodes. Naturally, all the semantics 01 the declarations resided in the functions.

And since the functions were written in LISP, it was easy to do anythinl desired. Note also

that the left to risht traversal made declarations 01 the form "declare type: identifier-list" more

advantapous that the "declare identifier-list : type", since it was easier to write a function

that stuck types on one id at a time.

9.	 tWry cia.. Itruc:tuI8

As an instructive measure, the next pqe IlJusuates the connection between the eMta

flow nodes, match nodes, control flow nodes, instances 01 library modules and the library

module definitions.

Libraryentry Instance Match Data flow Control flow
node node

bymbol--. inpulS.oulpUlI.
cOnlroI.~.... IINIChes
_.lIme.~1

I~,

Note: 1...1 denotes fields in a node

Filure E.1 Hairy data structures

243

Bibliography

[AcD79J
W. B. Ackerman and J. B. Dennis.

VAL - A value-oriented algorithmic language; Preliminary reference manual.

TR·218, MIT, June 1979.

[Ack821	 W. B. Ackerman.
Data flow languages.
COIIf(JIIIB, 15(2):15-25, February 1982.

(A8e761	 T. Agerwala.
Microprogram Optimization: A Survey.
IEEE TrtuuactioIu 011 C,."".s, C-25(10):962-97], October 1976.

[AhJ76(A. V. AM and S. C. Johnson,
Optimal Code Generation for Expression Trees.
JOfITJIIIl ifdw ACM, 2](]):488-501, 1976.

[AhUm	 A. V. Aha and J. D. Ullman.
Priltcipks ofCOIff#IIkr Desl,,,.
Addison Wesley, Readins. MA, 1977.

(AII701	 F. E. Allen.
Control Flow Analysis.
SlGPLAN Nodcu, 5(7):1-19, July 1970.

[AlI75(J. Allen.
Compuler archilecture for signal processing.
ProcNdl",s ofdw IEEE, 6](4):624-6]], April 1975.

[Arv791	 Arvind.
Decomposing a program for muhiple processors.
Proc. of IrruntDIiofttII COIfunce 011 PIII'IIlkI P1'rJaullt" pages 7-14, 1979.

[Bac781	 J. Backus.
Can programming be liberated from thevon Neumann stylet
COfIfIItIIIIicat ofdw ACM, 21(8):613-641, August 1978.

[Bar781	 M. R. Barbacci.
An Introduction to ISPS.
Technical Report 78-137, Camesie-Mellon Univ., August 1978.

[BarSH	 M. R. Barbacci.
Instruction Set Processor Specifications liSPS): The Notation and its Applications.
IEEE TrGIUGCfioIu 011 COfItI1IIUrs, C·]0(1):24-40, January 1981.
(also Camegie-Mellon Univ. Technical Report 79-12])

242

[BaH801 J. Batali and A. Hartheimer.
The Design Procedure Language Manual.
VLSI Memo 80-]1, MfT, September 1980.

[Bat81I J. Batali.
An Introduction to DPl.
VLSI Memo 81-65, MIT, October 1981.

[BMS811 J. Batali, N. Mayle and H. Shrobe.
The DPl.JDaedaius Design Environment.
pp. 18]-192 in VLV-8I.
Academic Press, New York, NY, 1981.

[Bau8H G. Baudet.
On the area required for VLSI circuits.
pp. 100-107 in C_,w-Melloft UU. COIfnma
COIffJ'I'IIIIioI, ed. H. T. Kuns. B. Sproull and G. Strele.
Computer Science Press, Rockville, MD, 1981.

011 VLV Synau IIItd

[Ber81J N. Bergmann.
A Case Study d the FIRST Silicon Compiler.
pp. 41] ...00 in VLV-8I.
Academic Press, New York, NY, 1981.

[801661 C. &ohm and Jacobini.
Flow diawams, Turing Machines and Languages with only two formation rules.
C~ofdwACM,9(5):]66-]71, May 1966.

[Bro761	 A. Brown.
Qualitative Knowledge, Causal Reasoning and the Localization d FailUft!S.
A1-TR-]62, PhD thesis, MIT, November 1976.

[Bur821	 G. R. Burke.
Control Schemes for VLSI Microprocessors.
MICRO-16, pases 91-95, 1982.

(CaS8H	 P. Cappello and K. Steillitz.
Digital Signal Processing applications d systolic alpithms.
pp. 245-254 in C_,w-Melloft UU. Ct1ft{nnta 011 VLV Syneru IIItd
COIWpIIItIIioIu, ed. H. T. Kuns. B. Sproull and G. Steele.
Computer Science Press, Rockville, MD, 1981.

[Cat781	 R. G. G. Cattell.
Formalization and Automatic Derivation d Code Genrators.
Technical Report 78-115, PhD thesis, Camesie-Mellon Univ., April 1978.
(Also published by UMI Press).

[Cat791	 R. G. G. Cattell.
Code Generation and Machine Descriptions.
CSL 79-8, Xerox PARC, October 1979.

(Cat80(R. G. G. Cattell.
Automatic Derivation d Code Generators from Machine Descriptions.
ACM TrGIUGCfioIu 011 P,.",~ lAft,/llJles IIItd Synau, 2(2):17]-190, April
1980.

[CAC811	 G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins and P.
W. Marblein.

Register Allocation via Coloring.

245
244

C~IIU' Uut'lIGIe~, 6(1):47-58, 1981.

IChM8l1	 B. Chazelle and L. Monier.
A Model 01 Computation for VlSI with Related Complexity Results.
Technical Report 81-107, Umeaie-Mellon Univ., February 1981.

IColI	 I. Cohen and C. Zuckennan.
Two languases for Estimatina Prolvam Efficiency.
C~ofIMACII, 17(6):301-307.

(Das801	 S. Dasgupta.
Some Aspects 01 High Level Microprosramrning.
ACII CDIrfIHIIiItI Swwyl, piI8I!5 295-324, September 1980.

IDLS811	 S. Davidson, D. Landskov, B. D. Shriver and P. W. Mallett.
Some experiments in Local Microcode Compaction for Horizontal Machines.
IEEE TnllUtlClioIU0fI COIfIIHIkrI, piI8I!5 460-477, luly 1981.

1005801	 I. OOKleer and G. I. Sussman.
Propasation 01 constraints applied to circuit synthesis.
Cirr..., 17wory_ AppIiarIIoIu, 8:127-144, 1980.

IdeKl	 I. OOKIeer.
A theory 01 plans for electronic circuits.
MIT AI Working Paper 144.

IDen791	 I. Dennis.
Varieties 01 data flow computers.
Fir.. I.,. COtfj. 0fI D.... COIIIpfIIiIII, piI8I!5 430-439, 1979.

IDenI	 P. B. Denyer.
An introduction to Bit-serial Architectures for VLSI Signal Processing.
pp. 225-241 in VLSl Ardlil«fllTe, ed. B. ~I and P. C. Treleaven.
Prentice Hall, Englewood Cliffs, NI.

IDeS791	 R. B. K. Dewar and E. SChonberg.
The EIemenlS 01 SElL Ityle.
Pr«utIUt,1 of 1M ACII NIIIioMlCOtfjua«, piI8I!5 24-32, 1979.

(DGL791	 R. B. K. Dewar, A. Grand, s-c Liu, I. T. SChwartz and E. SChonberB.
Program by R!finernent, as exemplified by the SElL Representation subJanguage.
ACII TTrIIIIIIICdoIv 0fI P,.",,..,.,,.,,. ~ _ Sy..-s, 1(1):27-49, luly 1979.

IDPSI	 S. W. Director, A. C. Parker.. D. P. Siewiorek and D. E. Thomas.
A Desillll MethodoJosy and Computer Aids for Digital VLSI Syslems.
Carnegie-Mellon Univ. Computer SCience Review 1980-1981.

ID0n811	 V. Donzeau-Gouge.
Denotational definition 01properties 01program correctness.
pp. 343-379 in Pro,,.. F'-~, ed. S. S. Muchnick and N. D. Jones.
PrenticeHall, Englewood Cliffs, NI, 1981.

IDOlI	 I. Doran.
An approach to automatic prob/ern-so/vina.
pp. 105-123 in III1d1i1w I_IMP"" I.
Edinburgh University Pless.

(Ear731	 I. Earley.
Relational Level Data !itJ'uctj,res for ProgramrninB Languases.
Aaa I~, 2:293-309, 1973.

(Ear741	 I. Earley.

High level operations in automatic programmina.

SlGPLAN Noticel, piI8I!5 34--42, 1974.

(also UC 8eftle1eyTechnical Report)

(FaR781	 D. G. Fairbairn and I. H. Rowson.

ICARUS - An interactive IC Layout Program.

/5,. Deli,,, ~ COtfj., piI8I!5 188-192, 1978.

(FKZ761	 R. Farrow, K. Kennedy and L. Zucconi.
Graph Grammars and Global data flow analysis.
17,. AIIlIIIlII S~ 0fI FDfIItda.... of COIJfIffI6 ScwlICe, piI8I!5 42-56, October
1976.

(FeR691	 I. Feldman and P. Rovner.

An ALGOL-based Associative Lanauage.

C~ of 1M ACII, 12(8):439-449, A6IBUst 1969.

(Fis811	 I. A. Fisher.

Trace SCheduling: A Technique for Global Microcode Compaction.

IEEETrtIIUGCIiDIu 0fI COffIPIIUrI, 30(7):478-490, July 1981.

IFoK791	 M. I. Foster and H. T. Kuna.

Design 01 Special-Purpose VLSI Chips: Example andOpinions.

Technical Report 79-147 , Carneaie-Mellon Univ., September 1979.

(FrS8l1	 E. H. Frank and R. F. Sproull.

Testing and debuuina Custom !.c.s.

COfIIIHIIiIII Swwyl, 13(4):425-452, December 1981.

(Gaj821	 D. D. Gajski.
The structure 01 a silicon compiler.
lIIUnwtioNJI COtfj. 0fI CiraIiU _ COffIPIIUrI, piI8I!5 272-276, 1982.

(GFH821	 M. Ganapathi, C. N. Fischer and I. L. Hennessey.
TabJe.driven Code Generation.
ACII COIfII1fIIittI Swwyl, 14(4):573-592, December 1982.

(Ges721	 C. M. Geschke.
GIobGJ Pro,~ Optillliz4liou.
PhD thesis, Camesie-Mellon Univ., October 1972.

IGet80I H. Gethoeffer.
SIPROL : A High Level Languaeefor Digital Signal ProcessinB.
l.,enwtioNJl COtfj. 0fI ~. s,..a MIl SI,_ ProcUliltl, piI8I!5 1056-1059,
1980.

IGIG781	 R. S. Glanville and S. L. Graham.
A New Method for Compiler Code Generation.
COtfjermee Reconl of ,. FtftIt ACII S,...,.... 011 PriIICipIu of P,.",...-u.,
Uut,_,el. piI8I!5 231-240, January 1978.

IGre761	 C. C. Green.
Tiredeli,,, of 1M PSI Pro,~ Syrt.IIwlu Syllnll.
Proceedings Second International Conference on Software Enaineerina. 1976.

IHaE801 R. M. Haralick and G. L. Elliot.
Increasing Tree Search Efficiency for Constraint Satisfaction Problems.
Anf/idtIllllUUi,ertee, 14:263-313, 1980.

247 246

(Hec771	 M. Hecht.
FIDw DA8lysis o/COIIIpIIlIT Pro,raMI.
Elsevier. New York. 1977.

(HSC821	 T. S. Hed&eS. K. H. 5lall!r. G. W. Claw and T. Whitney.
17w SlCWPS SiUcvfI COIIIpiln.
International Conf. on Circuits and Compulen. 1982.

UkM681	 L. B. lackson. I. F. Kaiser and H. 5. McDonald.
An Approach to the Implementation d Digital Filters.
IEEE ~ Oft AJIdio tIItI1 EI«1TOGCOUfic6. AU-16(3):413-421. September
1968.

\Joh791	 D. Johannsen.
Bristle Blocks: A Silicon Compiler.
16IItChll,,, ~ COII{.• paees 310-313. 1979.

\Johl	 S. C. Johnson.
Codeseneration for silicon.
COII{emtcr ReconI 0/ dw T,""" ACII ~ Oft PrlItdpkl 0/ Pro,TIIIIIIIIbI,LIIII,_,u. paees 14-19.

(Kan82) E. Kant.
~1tCY ill Protr- Syrtdwlil.

UMI Research Press. Ann Arbor. Michipn. 1982.

(also Stanford PhD thesis).

(KaU801	 M. Kaplan and J. D. Ullmann.
A SCheme for the Automatic Inference d Variable Types.
J-u o/dwACII. 27(1):128-145. January 1980.

(KaI651	 B. J. Karafin.
A New Block Diagram Compiler for Simulation d Sampled-Data Systems.
FIIIl JobIl C""",..,. C~ 19M, pqes 55-61, NIPS, 1965.

(Ke582)	 V. E. Kelley and L. I. SleInberJ.
The Critll!r SyslIem: Analyzing Digital Circuits by propagating behaviors and
specifICations.
ProcudMt6 N.--l COlI{. Oft AnfkW,.IU...-, paees 284-289, August 1982.

(ken81J	 K. Kennedy.
A sulWy d data flow analYlis techniques.
pp. 5-54 in ,.,.",,,,. FIDw ~ • n.-, .. AppIiauiofI, ed. S. S. Muchnick
and N. D.)ones.
PH, 1981.

(Kil731	 G. A. Kildall.

A unified approach to global prosram optimization.

ACII S".w- Oft I'rl1tcipkI 0/Pro,~ lAIt,_,e6, paees 194-206, 1973.

(K0s811	 P. KoRBe·

17w QTrlliteCflln 0/pipelbwtl COfIfIJf*rI.

McGraw Hill. New Yen, 1981.

(1Cop801	 G. E. Kopec.

17w npreurll4litJrl 0/DiKrew-lillw 61""'" tIItI1 IyMIIU ill ",.",raMI.

PhD thesis. MIT. May 1980.

(Kun81J	 H. T. Kung.

Why Systolic Architectures.

Technical Report 81-148, Camegie-Mellon Univ., November 1981.

(Le581)	 C. E. Leiienon and J. B. Saxe.
Optimizing Synchronous Systems.
AIUIIIIII SyrrtpOli_ Oft FlIfIIfdDtioIu o/COIItfII*T Sdertee, paaes 23-36, 1981.

(LiSI	 R. J. Lipton and R. Sedgewick.
Lower bounds for VLSI.
AIUIIIIII S".ww. Oft F~o/C~rSdertee 7.

lLAM811	 B. H. Liskov, R. Atkinson, E. Moss. J. C. SClyffert, R. SCheifier and A. Snyder.
CLU Refermce IIGN11Jl.
Sprinser Verlag. Berlin-Heidelberg-New York. 1981.

ILow741	 J. R. Low.
Automatic coding: Choice d data structures.
C5-7.....521AIM-242. PhD thesis, Stanford University. August 1974.
(Also published by Birklyuser).

(Low761	 B. T. Lowerre.
The HARPY Speech RecOtp'lition System.
Technical Report, PhD thesis, Camegie-Mellon Univ .• 1976.

ILy0801	 R. F. Lyon.
SilP'ill processi"ll with VlSI.
in "'.1,.
Xerox PARC, 1980.

(Ly0811	 R. F. Lyon.
A Bit-Serial VLSI Architectural MethodoIosY for SilP'ill Processi"ll.

pp. 131-140 in VLSUll.

Academic Press, New Yen. NY. 1981.

(Mac771	 A. K. Mackworlh.
Consistency in Networb d Relations.
ArtI/kW lIWIU...-, 8:99-118, 1977.

(Mas801	 L. M. Masinll!r.
Global Pru(p'am Analysis in an III4Il!faCthIe Environment.

SSL-80-1. Xerox PARC, January 1980.

(Also Stanford PhD thesis).

IMcS721	 D. V. McDermott and G. J. Sussman.
TheCONNIVER Reference Manual.
MIT AI Lab. Memo 259, May 1972.

IMcD771	 D. V. McDermott.
Flexibility and Efficiency a in Compull!r Pru(p'am for DesilP'llng Circuits.
AI-TR-402, PhD thesis, MIT. June 1977.

(MeC781	 C. Mead and L. Conway.
A,,/1fITtNlIIctioIt to VLSI SyMIIU.
Addison Wesley. ReadinlL MA. 1978.

IMS5811	 T. M. Mitchel, L. Steinberg, R. G. Smith, P. SChooley and V. Kelley.
Representations for reasoning aboutdigital circuits.
LCSR-TR-11, RU1Ie'S University, March 1981.

IMM5791	 J. G. Mitchell, W. Maybury and R. Sweet.
Mesa LanguageManual.
CSL-79-3, Xerox PARC, April 1979.

248	 249

(MoI83) D. I. Moldovan.
On the Design of AI80rilhms for VLSI Systolic Anays.
ProceNUt"IEEE, 71(11:113-120. January 1983.

(MuR76) C. T. Mullis and R. A. Roberts.
Roundoff noise in Di8ital Filters: Frequency transformations and invariants.
IEEE TNlllMlCIioIU 011 ACCNUdu, s,-d """ Si,1IIIlProceuilt,. ASSP-24(6):538-550.
December1976.

(New81) A. R. Newton.
Computer aided desisn of VLSI circuits.
Proc«dill" oj. IEEE. 69(10):1189-1199. October 1981.

(Nil80) N. j. Nilsson.
Prillcipkl ojArtijiciIIllllklli,ellCe.
Tioga Press. Palo Alto. CA. 1980.

INud83) B. Nudel.
Consistent-Label ins Problems and their A1pilhms: Expected Complexities and
Theory-Based Heurisdcs.
ArtijiciIIllllklli,MCe. 21:135-178.1983.

(0us81) j. K. Oustemout.
Caesar: An interactive editor for VLSI layout.
VUllHli,lI. pqes 34-38. FourthQuarter. 1981.

IPKL80) D. A. Padua, D. j. Kuck and D. H. Lawrie.
HiBh speedmultiprocessors and compilation techniques.
IEEE TnIIIIGCfiClIII 0lII C"""". C-29(9):763-776. September 1980.

(Pai83) R. Paip!.
Transformational Protvanvnin8 ­ Applications to Alpilhms and Systems.
COlI/ere,," R«tKd oj • T_ ACII ~ 0lII PrlItcipiu oj Pro,rtIIIIIItiItJ
~/I(I'u. pqes 7H17. 1983.

(PTS79) A. Parlcer, D. Thomas. D. SIewon!k. M. Barbacci. L. Hafer. G. Leive and J. Kim.
The umesie-Mellon Univ. Desisn Automation System.
16tlIIHli," A~COfI/.. pqes 73-80. 1979.

(PaW81) A. C. Parlcerand W. T. Wilner.
Microprosrammin8 - The challenaes of VLSI.
NIIIioItIIlC",.". COII/UNce. pqes 63-68. ,vIPS. 1981.

(POS77) D. Persky, D. N. Deutsch and D. G. Schweikert.
LTX - A Minicomputer-Based System ForAutomated LSI Layout.
JOfIIPIIII oj Dui," ~UOlI """ FIIIIb·Tol6R1111 COIIIpNIiIt,. 1(3):217-255. May
1977.

IRaL77) C. V. Ramamootthyand H. F. u,
Pipelined Architecture.
ACItI COfIIIHIIiItI SIIr'M1I. 9(1):61-102. March 1977.

(Ram80) R. J. Ramirez.
Efficient alpilhms for selectin8 efficient data storap! structures.
~18. PhD thesis, Univer5ity of Waterloo. March 1980.

(Ram79) L. H. Ramshaw.
Formalizin8 the Analysis of A18Ol'ilhms.
CSl-79-5. Xerox PARCo June 1979.
(also STAN-CS-79-741. Stanford Univer5ity).

IRiW80)	 M. Richards and C. Whitby·Streevens.
BCPL - TIle '-'/I(Ile GIldill compilB.
Cambridp! Univer5ity Press. 1980.

IRiv82)	 R. Rivest.
TIlePI (PkJcellWlIl GIldlIIkI'COllll«f) Syltnl.
19th Desisn Automation Coot.• March 1982.
(Also MIT memo 82-74),

(Ros77)	 B. K. Rosen.
Hish Level Data-flow analysis.
COfIIIIIIMIicGliou oj. ACItI. 20(10):712-724. October 1977.

(RoY)	 P. D. Rovner.
Automatic Representation Selection for Associative Data Structures.
Univ. of Rochester TR-lO. PhD thesis. Harvard Univer5ity.

(Ron	 L. A. Rowe and F. M. Tonte.
AI8Ol'ilhms for the synthesis 01 implementation structuret.
Univ. 01ulifornia. Irvine TR-91.

(5ac75)	 E. D. Sacerdoti.
A structure for plans and behavior.
Tedlllical Nou 109. SRI. Ausust 1975.

(San78)	 E. Sandewall.
Programmin8 in an Interactive Environment: The "Lisp· experience.
ACItI COfIIIHIIiItI SwNy6. 10(1):35-71. March 1978.

(Sau79)	 S. E. Saunders.
Cornpilin8 Customized Executable Representations and InterpreleB.
Technical Report 79-127. PhD thesis. Carne8ie-Mel1on Univ.• June 1979.

(55581)	 E. Schonber& J. T. Schwartz and M. Sharir.
An automatic Technique for selection 01data representations in SElL prosrams.
ACM TrtIIIMICtioIu 0lII Pro,r-tII, ~ """SY-'. 3:126-143. April 1981.

ISch5))	 J. T. Schwartz.
011 Pro,r-ua,: AIIIIIk"", Report 011 • SElL Proj«f.
Courant Institute. New York University. 1973 (second ed. 1975).

(Sch75)	 J. T. Schwartz.
Automatic Data Structure Choice in a LanBuap! of Very Hish Level.
COfIIIIIIMIicGliou oj. ACII. pqes 722·728. December 1975.

(Shr82)	 H. E. Shrobe.
The Data Palh Generator.
ProceNUt"oj Mrr VUI COlI/ere,,". pqes 175-181.1982.

ISSC82)	 I. M. Siskind, J. R. Southard and K. W. Crouch.
Generatin8 custom hish performance VLSI desilVl5 from succinct al8Ol'ithmic
descriptions.
ProceNUt"oj Mrr VUI COII/erellCe, pqes 28-39. 1982.

ISny82)	 L. Snyder.
RecOllf1ition and Selection 01 Idioms for Code Optimization.
AcIG l",orrNIIicG, 17:327-348. 1982.

ISfe8Oa)	 G. L. Steele.
The Definition and Implementation of a Computer Protvamming Lan8uap! based
on Constraints.

251 250

(Ste8ObI

(Sle81a)

(Sle81b)

(Slr78)

(Sus771

(SuS75)

(Sus75)

(SuI77)

(Ten74(

(Tho8O(

(ToR80(

(ToW77I

(Tre82)

(TBH82)

AI-TR-595, PhD thesis, MIT, August 1980.

M. J. 5tefik.

Planning with Constraints.

Technical Report 80-794, PhD Thesis, Stanford University, January 1980.

M. J. Slefik.

Planning and Meta-P1anning (MOLGEN: Part 2).

ArtVicillllltleUi,mce, 16:141-170, 1981.

M. J. Stefik.

Planning with Constraints (MOLGEN: Part 1).

Anfficlllllltle'U,ntee, 16:111-140, 1981.

W. D. Strecker.

VAX 11/780 - A Virtual Addressextension to the December PDP-11 family.

NtIIiofttII COIIIfIIIIer C~. pases 967-980. MIPS. 1978.

G. J. Sussman.

Electrical Design - A problem for Artificial IntelliBeflCe Research.

FiftIt I~ JoIN COli. 0fI At1fIkIIIlIItleUi,.ee. 2 :894-900. August 1977 .

G. J. Sussman and R. M. Stallman.

Heuristic Techniques In Computer-Aided Circuit Analysis.

IEEE 1'raIuGcdolu 0fI CIrcwIu I11III S,...... CAS-22(11):857-865. November 1975.

G. J. Sussman.
A COIfIIHIIN ",-, ofSkiUAcqulIUiOfI.
Elsevier. New Yortt. 1975.

N. Suzuki and K. Ishihata.

Implementation 01an Array Bound checker.

Cotr/erntee Reoord of tIN F__ AC", ~ 0fI 1'rlItcipk1 of Pror"-;'"

LtM,IIIIJeI. pases 132-143. Jenuary 1977.

(also Camegle-Mellon Univ. Technial Report)

A. M. Tenenbaum.

1'p o.rrJfiNItiOfIjor Very HI'" Lew'LtMJ...,u.

PhD thesis. Courant InstilUlle.October 1974.

C. D. Thompson.

A Complexity theory for VLSI.

Technial Report 80-140. PhD thesis, CamesJe-MelIon Univ.• August 1980.

F. W. Tompa and R. J. Ramirez.

An aid for the Selection01Efficient Storaee Structures.

C5-80-<46, University 01Waterloo. October 1980.

H. C. Tomg and N. C. Wilhelm.

The Optimal IntelConnection 01 Circuit Modules in Microprocessor and Digital

System Design.

IEEE TI'WIIUGCfIoIu 0fI COIfIIHIINI, C-26(5):450-457. May 1977.

P. C. Treleaven.

VLSI Processor architectures.

COIfIIHIIN. 1516):33-45. June 1982.

P. C. Treleaven, D. R. Brownbridge and R. P. Hopkins.

Data-Driven and Demand-Driven Computer Architecture.

C""""", StllWY1. 14(1):93-144, March 1982.

(Ts581)	 C. Tseng and D. P. Sieworek.
The Modeling and Synthesis 01Bus Systems.
18", lHli,rt A~ COli.• pases 471-478. 1981.

(WaI75)	 D. Waltz.
Using constraints in computer scene understanding.
pp. 19-92 in PlYdtolon ofCOIfIIHIIN V,... ed. P. H. Winston.
McGraw-Hili. New Yortt. 1975.

(Wan82)	 M.Wand.
Semantics-Directed Machine Architecture.
Cotr/~e R«ord of rite NbIt1I AC", S""""" 0fI Priltcipkl of Pror~,

lAIIptJ,el. paaes 234-241. January 1982.

(Weg75)	 B. Wegbl'eit.
Property extraction on _II-founded property sets.
IEEE TI'WIIUGCfIoIu 0fI SofrtwIn Ert,IIw«rIItI. SE-1(3):27D-285. September 1975.

(WiP83)	 T. W. Williams and K. P. Parker.
Design for testability • a survey.
ProcHditt,1 of rite IEEE. 71(1):98-112. January 1983.

(Zirn81)	 G. Zimmerman.
VLSI design with the MIMOlA design system.
lEE COli. PIIbUaJIiOfI No. 200, pases 277·280. 1981.

(Zim79)	 G. Zimmermann.
The MIMOLA Design System - A Computer aided digital Processor Design
Method.
16tJI Dai,. AMtcIllIcIfIOfI COli.• pases 53-63. 1979.

(ZimBO)	 G. Zimmermann.
MDS - The MIMOlA Design Method.
JOfInIIII ofDI,ittII s,#ftU. 4(3):337-369. 1980.

253

[Me(78) 98
[Mol83) 69
[New81) 7
[Nil80) 14,40,55,56
[Nud83) 42
[0us81J 8
[POS77) 2Citation Index [PKL80) 67
[PT579) 10
[PaW81) 70
/Pai83) 28
[RaL77) 79
[Ram79) 88

[Ac079) 86 /FeR69) 61 [Ram80) 62
[Ack82) 68 /FaR78) 8 [Riv82) 2
[Age76) 71,81 [Fis81J 71 [Ron 61
[MJ76) 51 [FoK79) 159 [Ros77) 22
(MU77) 103,162,22,91 [FrS81J 1,89 [Rov) 28,61
[AII70) 22 [GFH82) 51 [55C82) 10
[AII75) 163 /Gaj82) 13 (55581) 62
(Arv79) 68,86 [Ges72) 51 [5ac75) 75,85
[BMS81J 8 [GeI8O) 156 [San78) 237
[BaH80) 8 [GIG78) 51 [Sau79) 81
[Ba(78) 68 [Gre76) 62 [Sch5lJ 15,62,102
[Bar78) 10 [H5C82) 10 [Sch75) 15
[BatSl) 8 [HaE80) 42 /5hr82) 9
[Bau81) 64 [Hec77) 21 [5ny82) 52
[Ber81J 163 UKM68) 163 [5te8Ob) 40
(80166) 95 (Joh79) 9 [Ste81a) 40
[BI076) 13,41 Uoh) 13 [5te81b) 40
[Bur82) 70 [KaU80) 24 [5tr78) 24
[CAC81) 87 [Kan82) 28,62 [5ul77) 24
(u581J 64,161 [Kar65) 156 [Su575) 32,40
[ut78) 19,51 [Ke582) 13,40 (5us75) 75
[ut79) 51 [Ken81J 21,22,91 [5us77) 40
[Ut80) 51 [Kil73) 91 [TBH82) 68
[ChM81) 64 [K0s81J 79 [Ten74) 24
[Coli 69,88 [KopBO) 156 [Th080) 64
[deK) 13 [Kun81) 69 (ToR80) 62
[deS80) 40 [lAM81J 156 (Town) rr
[DGL79) 62 [Le581J 69,80 /Tre82) 68
[OL581) 81 [liS) 64 (Ts581) 77
[OPS) 10 [Low74) 3,28,61 (WaI75) 32,42
[Oas80) 70,81 [Low76) 55 (Wan82) 86
[De579) 15 [Lyo8O) 163 (Weg75) 24
[Den79) 68 [Ly081) 163 [WiP83) 89
[Denyer) 163 [MMS79) 103 [lim79) 12
[D0n81) 92 [MS581J 13 [limBO) 12
[Dor) 55 [Mac77) 41,42 (lirn81) 13
[Ear73) 14,15 [Mas80) 237
[Ear74) 15,102 (Mc077) 13,41
/FKZ76) 93,94 [Mc572) 75,240

252

255

Index

ALGOL
ARSENIC
BLODI
Basing. SElL
Binding. d parameters
Branch and bound
Bri5lle Blocks
Critics, functional unit shari"l
CLU
CMU OesilP'l Automation Syslem
Caesar
Circuit analysis
Coefficients, filter
Conniver
Consisll!nt Iabelin.
Constrainls
ConIroI section, optimization
ConIroI store aeneration
Critics, ~ path bundli"l
Critics, failure
Critics, field encodi"l
Critics, pinouts
Critics, pipellni"l
Cril1ler
DESI
OFT
OPG
OPt.
Daedalus
Dato1 Path Generator
Oato1 tlow, machines
Dato1 path, bundling
Debugi"l
Debuging. constraint based
FFT
FIRST

102

13

156

62

50

62

9

77

156

10

8

40

161

75

41

40

80

72

77

81

81

80

79

13,40

13

158

9

8

8

9

68

77

89

41

158

163

Filter coefficients
Filters
Fourier transform
Graph grammars
Graphic editors
Hacker
Harpy
Harvard machines
Hill c1imbi"l
ICARUS
15P
Idiom recognition
Instolntiation, d library modules
LEAP
LISA
LTX
Layout lanauases
Libra
Library represento1tion
MC68000
MOS
MIMOLA
MOLGEN
MSS
MacPitls
Machine, Harvard
Machines, dato1 tlow
Machines, reduction
Matcher
Matchi"l
Memory hierarchy
Metrics
Microcode controllers
Microcode, seneration for signal processors
Microcode, optimization
Microprogram, optimization
Molgen
NOAH
PI
Pipelining
Planning
Procedure calls, lack d
Property extraction
Psi
Reduction machines
Register allocation
SEll
SIPROL
SPt.
Sampling rate
Search algorithm
Search, beam

161

157

158

93

8

75

55

66,77

61

8

10

51

50

61

13

2

8

62

45

1,70

12

12

40

12

10

66

68

68

46

43

87

64

70

163

71

81

41

75

2

79

40

86

24

62

68

87

15,62,102

156

156

159,163

59

55

254

256

Search, staged
Shimming delays
Sidops
Sisnal processing
Silicon compilen
SyslOlic arrays
Table driven code generation
Testing
Timing measurements
Trace scheduling
Transforms
VAL
VERS2
WabOn
Xi
YASl

55

80

10

64

9

68

51

89

88

71

158

68

15,102

13,41

13

102

