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Abstract
 

The report concerns the design and implementation of a compiler for two 
Very High Level Languages. The first language is a set language similar to VERS or 
SETL. The second language is a novel signal processing language. The compiler uses 
data flow and type information to constrain possible choices before choosing a 
possible implementation. Heuristic search is then used to choose from competing 
implementations of abstract data types. Constraint propagation is used at every 
selection step to remove incompatible configurations from the search. Finally, the use 
of specialized procedures called "design critics" is proposed to resolve global 
constraint conflicts. The output of the compiler is a parts list, a net list of module 
interconnections and the fields of the control store. 

The preparation of this paper was supported in part by National Science Foundation 
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Research Projects Agency, monitored by the ONR, under Contract No. NOOO14-78­
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configurations from the search. Finally, the use of specialized proce­
dures called "design critics" is proposed to resolve global constraint 
conflicts. The output of the compiler is a parts list, a net list of 
module interconnections and the fields of the control store. 

The work reported in this thesis has shown that: 

1) Compiler techniques can be used to generate machines from 
programs. These machines may then be implemented using VLSI 
modules. 

2) Very High Level Languages can be used to hide the implemen­
tation complexity of VLSI design. 

3) Constraint methods are profitably applicable to the VLSI 
problem domain. 

4) Heuristic search and constraints can be successfully used to 
choose between implementations with differing costs. 

5) Resource constraints can be used to control the optimization 
of the design by triggering specialized code. 
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A8STIACT 

The desisn oi inteBrated circuils is a time consuminB task. As the density oi lhe circuils 

increases. so will lhe desisn problems. Several methods have been proposed tor reducinB lhe 

desisn complexity for VLSI. Some oi these methods include lhe use oi stick diasrams and 

compaction. primitive silicon compilation and lhe automatic seneration oi machines from 

low level descriptions. The work presented in this thesis is a step toward lhe ultimate pi oi 

compilation oi PfOlVilJnS to silicon. 

The thesis concerns lhe desisn and implementation oi a compiler for two Very Hip 

Level lanJlU'l8l!5. The first lanauase is • set lanauase similar to VERS or SEll. The second 

lanpae is a novel sianal processi,. I~. The compiler uses data flow and type infor­

mation to constrain possible choices before choosinB a possible implementation. Heuristic 

search is lhen used to choose from competi,. concrete implementations oi abscrilet data 

types. Constraint propaption is used at ttYerV selection step to remove incompatible conti­

BUrations from lhe search. finally, lhe use oi specialized procedures called ·desisn critics· 

Is proposed to resolve "'1 constraint confIicls. The output oi lhe compiler is a parIS list, a 

net list oi module interconnections and lhe flekk oi lhe control store. 

The system described above hill been implemented on a VAX-11 computer in a dialect 

oi Lisp. It demonstrates thatexisti,. compiler methodoIoBv can be effectively combined with 

ArtifICial Intelli,ence search leChniques to perform selection oi VLSl modules for a very hip 

levellanpae. The work reported in this thesis hill shown that: 

•	 Compiler techniques can be used to senerate machines from PfOBRms. These 

machines may lhen be irnplemenled usin. VLSI modules. 

•	 Very Hip Level Lanauqes can be used to hide lhe implementation complexity oi VLSI 

desisn 

•	 Constraint methods i1I'e protitably applicable to lhe VLSI problem domain 

•	 Heuristic search and constrainls can be successfully used to choose between implemen­

tations with differi.. costs 

•	 Resource constrainls can be used to control lhe optimization oi lhe desisn by trigerinB 

specialized code 
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3 2 

ten "A.I."). These techniques are necessary to overcome the complexity of designing large cir­

cuits like those found in todays microprocessors. 

3.	 What this work reports 

This thesis reports on the design and implementation of a VlSI compiler for a Very High 

level languaae. Data flow analysis is used to derive properties of variables. These "proper_ 

ties" are used to "preselect" the set of possible implementations. The compiler uses heuristic 

ssrch to choose from competil18 implementations for an abstract data type. Type propap­

tion is used to eliminate incompatible combinations, l.e., selections with conflicting 

input/output properties. Finallv, if problems arise, then special design operators called "cri­

tics" could be called to try and resolve the design problems. (The implemented system did 

not havea full implementation of the critics). Thefinal output from the compiler is a net list 

of module interconnections as well as a puts list and a Iistil18 of the microcode fields for the 

machine. Thecompiler assumes the existence of an auromatic placement and routil18 system 

such as lTX IPOS77I or PI IRIv82I. The output from this subsystem should be suitable for 

direct implementation on silicon. 

4. AneumpIe 01 system operation 

As a demonstration of the capiblllties of the syslIem(called Slu, short for "Silicon"), con­

sider the foIlowins Jl'08I".irn: 

proaru tranaitiveclosure 

set of !Jet of inte,er : related, _lyRelated, found;
 
set of inte,er : x,y;
 
set with size 0 of intecer : phi;
 

related :. phi;
 
newlyRelated :. base;
 
while (newlyRelated <> phi) do
 
becin
 

found :. phi;
 
foran x in newlyRelated do
 

foran y in x do
 

found :. fOWld with y; 
related :. related with newlyRelated; 
newlyRelated :. fOWld - related 

end
 

end.
 

Figure 1.1 Sample VASl Jl'08I"am
 

This prOIJ'am is a slightlv reworked example from low's thesis Ilow74) (pp. 14) written 

in the langua&e "VASl" (Appendix O. Now assume the input library contains descriptions of 

sets implemented both as parallel arld serial registerl. A set library thatcontains these defini­

tions can be found at the end of Appendix C. A full description of of the library format can 

be found in Appendix B. The full workings of the demonstration system are left for the subse­

quent chapters - in particular each chapter explains the functionil18 of one part of the SIu sys.­

tem. 

Theoutput of Sill is (1) a "parts" list (a list of modules) (2) a set of module interconnec­

tion graphs expressed as a net lists (3) a Iistil18 of the control store. SChematicallv, the output 

would look like the graph in fisure 1.2. 

One of the solutions given in Appendix C (VASl) is illustrated in figure 1.3. Note that 

the clock wires havebeen omitted. 

Slu is both table driven and -JanauaIe Indepet"",. As a demonstration of this, a very 

high level signal processil18 1.1"" called ClASP(discussed in Appendix D) was designed 

and implemented in SIll. 
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The example shown below in figure 1.4 implements a well known touch-tone receiver: 

lIIOdule TouchToneDecoder 

__ The now classic touch tone decoder, as done originally in 1963 
__ ~ a group in Bell, then done aaain in 1968 by Jackson, et al 
-- and done again ~ L¥on. 

declare tuple of integer : lowerBand, upperBand;
 
declare tuple of integer : lowerBandCenterFrequencies;
 
declare tuple of integer : upperBandCenterFrequencies;
 
declare tuple of integer : detection;
 
declare integer result; -- output fra. hu. filter
 

-- (and iteration variable) 
declare integer : bandLi.it; -- bandpass (and lowpass) band li.it 
declare integer : input; -- input fra. the A/D 
declare integer : output; -- output fra. the .ooule 
declare filter fra. 180 to INFINITY: noHua; -- Line hu. filter 

lowerBandcenterFrequencies :. 697, 770, 852, 941 I ;
 
upperBandcenterFrequencies :. 1209, 1336, 1447, 1663 I ;
 

result :. n~(input);
 

lowerBand :. filter result fra. DC to 1070 : lowerGroupFilter;
 
upperBand :. filter result fra. 1070 to INFINITY: upperGroupFilter;
 

detection :. phi;
 

foreach centerFrequency in lowerBandcenterFrequencies do
 
detection :. detection plus
 

filter HalfWaveRectifier(
 
filter lowerBand 

fra. centerFrequency-bandLi.it 
to centerFrequency+bandLi.it 

with Q of 15 and 
with stopbmJd attenuation of 16 db down 
: l~ra.ndPass) 

fra. DC 
to centerFrequency+bandLi.it 

detectLowGroup; 

foreach centerFrequency in upperBandCenterFrequencies do
 
detection :. detection plus
 

filter HalfWaveRectifier(
 
filter upperBand 

fra. centerFrequency-bandLi.it 
to centerFrequency+bandLi.it 

with Q of 15 and 
with stopband attenuation of 16 db down 
: upperBandPass) 

fra.	 DC 

to centerFrequency+bandLi.it 
: detectUpperGroup; 

foreach result in detection do
 
output :. LeYeIDetect(result)
 

erxl. 

Filure 1.4 Sample ClASP prosram 

The detailed output from Sill for the sample YASl prosram (filure 1.1) can be found in 

Appendix C. The simplified output (net list) for one desisn can be found at the end at 

chapter 2. The output for the sample ClASP prosram (fllure 1.4) can be found in Appendix 

D. 

Note that throughout this thesis, references to the -sample prosram- refer to the sample 

YASl prosram, not the ClASP prosram. 

5.	 Relevant'" 

The next three sections present an CM!fView atwork that Is relevant to the thesis work. 

The fint section Ioob at the present state at the art in desisn automation and claims the 

present desisn tools are not suffICiently powerful to soIYe the problems mentioned In the fint 

section. The next section describes the use at A. I. based tlechniques in circuit desisn. The 

last section looks at the state atVery HiBh leYeI LansuaBes. 

5.1.	 DeIip Automation 

The computer aided desisn (CAD) at intetp'ated circuits has been an active area at 

research for a lonl time. Therefore, the body at literature on CAD is Ions and extensive. 

Any attempt to comprehensively survey the field here would be inappropriate. However, the 

interested reader should see Newton's recent survey INew811 for a review at the current 

state-of-the-art in CAD for VlSI. The next two sections briefly review two aspects at CAD: 

sraphic editors and layout lanluases. 
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5.1.1.	 Gr.ic Editors 

Graphic editors were the first form 0#design automation to be used in the semiconduc­

tor industry. Rather than being laid out on paper, designs are laid out on a Cathode Ray 

Tube (CRT) using an editor which can eventually produce output suitable for fabrication (such 

as a maskdescription). 

It has been observed that designs repeatedly use smaller designs. The latter designs are 

called "cells". Several sraphic editors have been created that allow the user to define and 

call cells within the editor. Examples 0# these editors are ICARUS (FaR781, Daedalus 

(BMS8l1 and CAESAR 10us811. 

Like programmers, circuits designers control design complexity by exploiting hierarchy. 

This hierarchy can be expressed by a form 0# "macro expression" that occurs when cells are 

"called" within Olher cells. Self reference is not permitted as the sraphic editors mentioned 

above lack the ability to stop recursion. However, as sophisticated as today's sraphic editors 

are, the time to layout an entire circuit is still overwhelming. In part, this is due to the lim­

ited size 0# the CRT screen. Only a certain number 0#devices can be displayed before the 

screen becomes a blur 0#color. The lVaphic editors mentioned above set around this ~ 

lem by using "windowing" to present only a small part 0# the overall design. Unfortunab!ly, 

while good for design in the small, windowing il terrible for design in the large. Another 

problem with sraphic editors is the lack 0#signal typing. Without typing, connecting the out­

put of one cell to the output 0# another cell (or connecting two signals that don't share a 

compatible format) is quib! easy. 

5.1.2.	 uyout Wapqes 

Work has also been done in using non-graphical languages to describe circuit layout. 

DPl (BatSl JlBaH801 is a simple Lisp based command language that has low level primitives 

that can be used to form complex commands. For eQlTlple, "(from (pt xl y1)) lrun-Iayer 

'poly) (run-width 2) (tox deltaX) (toy deltaY)" will creab! a poIysilicon line 0#width 2 lambda 

that runs from (xl, yl) to ((xl +deltaX), (yl +deltaY»). Theseprimitives are used by Lisp func­

tions writb!n by the user to senerab! cells. Besides rudimentary layout functions DPl also 

provides primitives for ib!ration and PlA construction. One purpose 0# DPL is to provide 

flexibility at the cost 0# sophistication. In fact, DPl is really a meta-Ianguaae to be used in 

construeting newdesign systems. 

Shrobe's Data Path Generator (DPG) (Shr821 an example 0#a system built using DPL. II 

is used to construet the data path sections 0# special purpose machines. The cells used by 

the DPG are designed with the sraphic editor Daedalus. The cells are also described with a 

declarative language for input to the DPG. The data path section generated by the DPG has 

a fixed architecture with drivers at the "top" and a global bus that connects the registers and 

operators together. The registers and operators have a fixed vertical pitch but are stretched at 

predefined stretch points to attached to other fixed wires. Shrobe points out that the DPG is 

organized around a particular design style that makes it inflexible when the prob/em domain 

is changed. 

5.2.	 Silicon compilers 

As mentioned in the introduction, the phrase "silicon compiler" has come to mean 

many different things - from compiling programmable logic arrays (PLAs) to generation 0# 

machines from languages. The next sections look at some systems that have been called "sil­

icon compilers". 

5.2.1.	 Bristle Blocks mel Side.. 

Bristle Blocks Uoh791 is a primitive silicon compiler. It .Ilu·lll~ " 'Ik'lific microcode 

instruction word and a list 0# elements in the data IMh (l.,lIl'l.l a "corr-" hy )"h,lIlnwn' and 

generates a two bus machine thaI inlplen1f'nt~ th.. mu ruPlOlIrdnl. There are three input sec­

tions to Bristle Blocks: the d,·I.llh·,j 1111."" ,><.Ie :.pecification, tht' "~t ul I>u,," and bus 
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connections and the elements of the "core" (i.e., the cells). The library cells of Bristle Blocks 

have a fixed layout and are described procedurally, like OPL cells. 

Siclops IHSC82) is a ~ implementation of Bristle Blocks. It was designed to over­

come some of the limitations of Bristle Blocks. In particular, it allows a flexible floorplan as 

well as automatic routing of signals, power and ground. 

5.2.2. MacPltts 

MacPitts ISSC82) accepb iI register trilnsfer language with parallel constructs and gen­

erates a machine down to the level of layout. However, the architecture of the underlying 

ITl;IChine seeps into the lilOpge specification. For eumple, all registers are read before they 

are written, which allows for some seeminsly confusil18 constructions. For example, (par 

(setq a b) (M!tq b a)) interchanges a and b because both iI and b ilre read out before they are 

written. Since registers are read before beil18 written, this ilSSUre5 that the registers do not 

share buteS. MacPitts prantees this by copyil1l datil paths until there ilre no conflicts. 

Operiltions that are to be performed In parallel must be marked explicitly by usil18 the "par" 

constructor as shown move. MacPitts alto uses a primitive control trilnsfer operations (goto) 

to effect state transfer. The cells ~ by MacPitts (called "orpnelles" by MacPitts designers) 

are defined usinl Lisp functions to be bit slices. The "orpnelles" generated by these functions 

must beable to stretch (like Shrobe's DPG celli) to connect to the signal and power buses. 

5.2.3.	 eMU Desipl Automation System 

The CMU Desiln Automation System IPTS79) lOPS) is a long term project with the 

eventual goal of autom4ltinl dilital desi&". The CMU OA System accep«s a machine descrip­

tion written in ISP IBar78) IBar81\, a particularly low level register transfer lanluage. 

Althouah ISP is both flexible and generill, its level of description is very low. If the designer 

does not have an architecture in mind, the system will not create an architectu 

DaY base clescriooon 

Datil base cIesc,i, 

Filure 1.4 CMU OA system block diagram 

First, the ISP description is parsed. The Value Trace analyzer runs over the parse tree 

generating the Value Trace Iraph. The Value Trace araph can be optimized, much like a 

proIfam to get rid of inefficient operations. Next, a decision is made"by the user" about the 

"desiln style" to be used. A "desi&" style" is a class of machine orpnizations, such as pipe-

Datil Base 
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lined, decentralized arithmetic and 50 forth. The design style allocator creates data paths 

from the Value Trace. The module binder assigns implementations from the librdry 10 th.. 

various modules. The final step is the generation 01 the control section 01 the machine. 

The CMU DA system differs from SlU in many ways. First, the input language 01 CMU 

system is ISP, a low level register to register transfer language. ISP comes close to dictating 

the intemal architecture 01 the machine completely by specifying the connection 01 internal 

registers. 

The value trace 01 the CMU system differs in a significant way from the control and data 

flow analysis used in SIll: variables are removed from the ISP, whereas in Sill, the variables 

are used to select implementations. 

Theoptimization phase 01 the CMU system is similar to the use 01 critics in Sill. How­

ever, some optimizations 01 the CMU system (such as the transformation 01 parallel to serial 

designs) are not needed here since the selection phase will choose these designs automati­

cally. 

The module binder phase 01 the CMU system has the same goal as the selection phase 

01 SIll, i.e., attachln. iPKific matches to the data path 01 the machine. 

Likewise, the control allocator is very similar to the control lection synthesizer 01 SIll 

except that the COfltrol section synchesizer operaIeI from a control flow graph and not from a 

"procedural descriptloll" as in the CMU DA syseem. Thecontrol section synthesizer reflects 

the "microcode stYle" 01 the CMU DA sysllemS. 

5.2.4.	 MIMOLA 

TheMIMOLA design system (Zim79)(Zim801 is a system with similar soals to Sill, but at 

a much lower level. The MIMOLA system accepts a macro lanauage with low level con­

struet5 and generates a register transfer machine that implements the program. The next step 

in synthesis (the Automated Logic Design System) takes the register transfer machine and 

generates a gate level description by doing macro expansion and tree walking. The last step 

in the design process is the use of the Physical DesIgn System (a subsystem 01 MIMOLA) to 

complete the task 01 layout. More recently, the MlMOLA system has been focused on the 

VLSI domain. The system is now called the "MIMOLA Software System" (MSS) (Zim811 The 

MSS user can put specific limits on resource usage. MSS uses constraints to control resource 

allocation (See Chapter 3). Perhaps the biggest difference blIlween MSS and SIll is the view 

01 the user. MSS is a "full partner" in the design process; in SIU, the designer supplies a pr0­

gram and a few assertions and the rest is aUlOmatic. 

5.2.5.	 ARSENIC'" Xi 

The LISA language (part 01 the ARSENIC system (Gaj82/1 and Xi (Joh) are similar sys­

tems. They are both high level languages with similar ipPrOaChes to compilation. Both 

languages have fairly primitive operators (such as "shift" lind "rotate") that are expressed 

directly 111 tbe generated hardware. ARSENIC is a top down design system 01 which LISA is 

only one part. Like SIll, it performs timing analysis on the generated hardware to check that 

the chip meets the design constraints. 

5.3.	 A.I. ~hes to autonYtins circuit desi.. 

Somework has been done using A.I. principles and techniques in automating construc­

tion 01 circuits. McDermott's (McD77) thesis system, "DESI", was able to design simple cir­

cuits from a p1all. McDermott's system used constraints between modules to guarantee that 

the modules would work together. A similar technique was used by a group at RutlJerS 

(MSS8l1 (KeS821 to analyze behavior 01 digital circuits. deKleer's thesis proposal (deKI 

worked on a theory 01 planning that accounted for some 01 the defICiencies 01 McDermott's 

thesis. Specifically, these deficiencies included the lack 01 knowledge 01 partial plans and 

the ability to recognize circuit fragments as plans. Brown's thesis IBro761 is closely related to 

McDermott's but deals with the problems 01 debuUing circuits, not generation. 



15 14 

These works will be discussed further in the chapter on constraints. However, the plan­

ning view d design is quite different from the compiling approach used in Sill. In planning, 

the user provides the system with a pi and constructs plans to achieve that goal. A 

hierarchical planner divides the main pi into subgoals (recursively) until the subgoals are 

achievable. (See Nilsson INil801 for a review d planning). Generating a plan from a high 

level goal is an extremely diffICult task. First, the planner should have a data base d avail­

able plans. The plans must have preconditions, effects (and possibly constraints). Second, 

the planning mechanism should be mIe to carry many plans in parallel. In compiling, the 

user provides a program (a specific solution to a problem), not a plan, and this program is 

used to generate the output code that will produce the solution. SIll outputs a description d 

the machine, not code (except for the microcode d the machinell. 

Compilers accept ptOfIIams i.e., a specifIC solution to a problem. A planner accepts a 

high IeIIel floal. 

5.4.	 Very Hilhlewl ........
 

In 1973, Ear\ey IEar731 identified three criteria for the design d (very) high level ~ 

lJI'amming languages. Theywere 

(1) The ability to write a program in a clear and concise manner 

(2) The ability to ignore the implementation Iuues and concentrate on the semantics 
and correctness d the algorithm 

(3) Postpone design decisions on seeminaJy unrelatll!d portions d the program until 
needed. 

Of these three points, the second point is d particular interest. This is because the user 

d a high level silicon compiler shouldbeable to ignore the details d VLSI implementation. 

Past work in Very High Level Languages has been principally done in languages with 

abstract types such as sets, tuples and relations. As stated above, the use d these high level 

types intentionally obscures common programming details such as pointer chasing, memory 

allocation, structure formation and implementation selection. 

SElL (Sch511 IDeS791\Sch751 is perflaps the best known set language. SElL uses sets as 

its fundamental data type. It has existential and universal quantifM!l'S as primitive operators as 

well as functions over sets. Since its inception, SETL has been studied as a vehicle to explore 

automatic selection. 

VERS2 IEar731 IEar741 was another Very High Level Language developed by Jay Earley 

and students. VERS2 used the notion d "relational accen" rather than the notion d "access 

paths" (e.g., pointer references) for data structure access in programs. It shared many features 

with sm but had a different syntax and a relational and matchi"l sublanauqe. 

SIll uses two very high IeIIellanguaaes; one, called "VASL" is a descendant d VERS2. 

It is discussed in Appendix C. The other lanauqe is a slanal processi"l language called 

"CLASP". It is discussed further in AppendiX D. 

6.	 Orpnization of the IheIis 

This thesis besins with the example program shown earlier in figure 1.1. This example 

is used throughout the thesis to demonstrate the piItJ d the system. The second chapber is 

an overview d the system, what each part does, what it connects to and how the symbiotic 

whole works. The third chapter describes the use d constraint (type) propaption in reduci"l 

the search space. The next chapter incroduces heuristic search as a method for choosing 

implementations, and includes descriptions d the metrics and module bindi"l techniques. 

Chapter 5 presents the implicit machine model and how to constroct microcode for it. 

Chapter 6 discusses the implicit machine architecture as well as how to generate the control 

store. Chapter 7 introduces the use d critics as a mechanism to resolve constraint failure. 

Each possible critic is also described alons with the circumstances that could brinl about its 

use. The eighth and final chapter presents the results d the work: what worked and what 

didn't as well as the orpnization d Sill. Appendices are included that live extremely 
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·Vou will W<e • cl>MKe on someIhin, in /he nNI f_"detailed annotated traces atStll in operation. 

Chapter 2 

Overview of Sill 

1.	 Introduction 

In this chapter, Sill is surveyed. The chapter is self sunding, i.e., can be read without 

reading the remaining parts at the thesis. The previous chapter introduced the problem at 

VLSI compilation and past work. The reader is encourased to read it for further bacqround 

on the problem. 

Section 2.1 briefly discusses the various components at Stu with reprd to their 

inpulloutput behaviOl'. The detailed descriptions at the innennost workings at each com­

ponent are described in the subsequent chapters. 

The input to the system is discussed in leClion 2.2. SIll was designed to be "language 

independent", i.e., the internals at SIll are not dependent on the semantic;s at the input 

language. The exact syntax and semantics at the input languaaes that were used are left to 

Appendices C and D. Next, the concerns that led to the inclusion at particular information 

are discussed. The next section discusses how heuristic search and type matching work 

together as a selection mechanism. Afterfinding selections. the next step is the generation at 

the control store and the control machine. Global constraints and critics are discussed next 

as a mechanism of design modification in the event at selection failure. Finally. the part at 

Sill that actually lJeOI!rates the output is presented. 

17 
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2.	 The modules and their input/output beMvior The output from the parser is a pane tree. It is used by several modules including the 

type declaration module (001 shown in the figure) and the flow analysis modules. The typeThe overall organization 01the compiler is shown below in the figure 2.1: 

declaration module just wde<:orates" the tree with various type declarations from the declara­

tion statements. Thecontrol flow procedure nowtakes the pane tree and calls upon the data 

Gr; flow procedure to analyze subtrees 01 the pane tree at appropriate points. The output 01 the 

control flow and data flow analysis routines are the control flow and data flow graphs. 

It is now possible to apply Yarious graph transformations (for example, algebraic 

o.ta flow transformations) at this stase. Cattell's thesis I<AV81 includes a catalo8 01 various possible 
equalionI 

transformations (see page 521 that would be useful in a system that is in production use. 

However, the implemented 5IlJ system did 001 perform any transfonnations on the data flow 

graph. (Note that unimplemented sections are illustrated uslns dottedboxedl. 

Thenext step is to match the data path (as described by the data flow graph) apinst the 

various implementations described in the library. The InItehins procedure uses the type 

information to cut down the number 01 possible irnplernent;atio durins the search. The 

matcher establishes a correspondence between the matches (called "instances") and the nodes 

in the data flow graph. 

lllnry 

Haying built up the correspondence between instances and nodes in the data flowt- : Critic
 
: Gallery
 

graph, the next step is to "bind"' the parameten in the library description to the properties in 

the data flow node. This "fully instantiateswthe node by specifylns parameters like size and 

width. Thenext step is to choose the Imp/ementations. 

The selection 01 implementations (instances) begins by sortins the nodes 01 the data 

flow graph by the number 01 implementations that matched that node. This is because the 

nodes with re-r choices should be chosen first as they will constrain the choices later on. 

After sorting the implementations, search begins. As the search is taking place, each choice 

is "weighedw to guarantee that the choices will be within the design constraints specified by 
Figure 2.1 Overall system organization 
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the system user. Should a choice violate one 01 these constraints, then a design "critic" 

would be called in an attempt to resolve the conflict. (The implemented SIll system did not 

have full implementation 01 critics). If resolution is not possible, the choice is tossed out. 

Also, as each choice is made, the signal types 01the implementations are checked to make 

sure that they agree. If they don't, then the choice is thrown out. The search process ends 

when all nodes have been processed. The next staae seneraleS the control section. 

The seneration 01 the control section is relatively straight-forward. It tJesins by gather­

ing all the control fields 01 the nodes in the control flow lVaph. Next, a control section is 

created from the library and the fields 01 the control section are filled. The final step is the 

seneration 01 a multiplexer that Jives the jump signal to the control unit. (The multiplexer 

serves to gate the appropriate lest signal to the pnlIram counter). 

The final step in the compiler is to senerate the net list. This is done by connectinB 

each module, one at il time, to the moduleswhich its signals are connected to. 

The rest 01 this chapcer is devoted to taking the example from the previous chapter and 

"running" it through the system. 

3.	 InfOl'lNltion ptheri.. 

A "conventional" compiler, t.e., one that compiles a source text into a machine 

language needs to know about data types, dataflow and control flow as well as various facts 

about the output II1<IChine language and machine model. 

SILl requires more information than a conventional compiler. Besides the abovemen­

tioned data, a VLSI compiler needs information on the library 01 implementation choices as 

well as the implementation constraints 01each choice. 

In the next three sections, the front end 01 the compiler is examined lO show what 

types 01information are needed and gathered. 

3.1.	 D... flow iINIysis 

Data flow analysis is an old idea dating back to the earlier days 01compilers. Recently, 

data flow analysis has benefited from a rigorous devefopment which can be found in Hecht 

(Hec77) or Kennedy (Ken81). Data flow analysis derives a directed lVaph called (appropri­

ately) a data flow graph. Each node in the graph cOl'l'l!5pOnds to a variable or operator in the 

input pnlIram. An arc connects two nodes if datacan be "transmilled" from the source node 

to the sink node. For example, take the example program shown in figure 1.1. Its data flow 

lVaph is shown below. 

Figure 2.2 Data flow lVaph for example pnlIram 
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Fortunately for system designers and implementors, data flow graphs are easily con­

structed at parse time. Rosen [Ros77) and Kennedy [Ken81) give procedures that can be exe­

cuted as semantic routines during parsing, i.e., as a form 01 syntax directed translation. 

The data flow techniques used by SIU will not be described here because they are not 

critical to the operation 01 the system. The data flow technique is a bit unusual because the 

system is "language independent" and therefore the analysis is table driven. The interested 

reader can find all the details 01 the method in Appendix A. 

3.2.	 Control flow analysis 

Control flow analysis is closely related to data flow analysis. It describes the path 01 the 

prosram counter as the prosram is executed. Like the data flow graph, it is a directed graph 

where each node represents a statement and each art: represents the transfer 01 control from 

the sourt:e to the sink. 

Like data flow graphs, control flow .,aphs are easily formed at parse time. Like the 

data flow method, the control flow analysis procedure used by Sill is lal18uage indepelldellt 

and tabledriven. The details 01 the methodcan also be found in Appendix A. 

Allen IA1I70) has an introduction to control flow analysis. A more modem introduction 

can be found in Aha and Ullman [AhUn). 

For the example prosram, the control flow .,aph is shown on the next page. 

3.3.	 Other forms of ~ 

There are other analytical techniques that are 01 use in gathering information about a 

program. For example, the range 01 an array or the maximum size 01 a set will be extremely 

useful during the selection process because these measurements are used to generate the 

appropriate sized elements. The use 01 this information will be discussed in greater detail in 

the section on binding (see Chapter 4). 

FilPft 2.3 ConlIul flow paph 01-,,* IJlOlIrMl 
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3.3.1. Property Extraction 

Besides control and data flow analysis, property extraction is another useful compile­

time technique. 

3.3.1.1.	 Type determination 

Tenenbaum (Ten74) and Kaplan and Ullman (KaU80) both present algorithms for deter­

mining type in languages with runtime typing. Wesbreit (Weg75) presents an algorithm that 

computes various program "properties" including the type 01 variables (in a language with 

runtime types) and data bounds. Type information is 01 immediate use to a VlSI compiler 

that separates the implementations by type as this compiler does. Type propasation is a 

needed component in the system because the interior nodes 01 the data flow graph (the 

operators) do not have types declared explicitly. A modification 01 Wegbreit's procedure 

could be used to derive the types 01 the interior nodes in the data flow graph. This will 

become clearer in the section on binding in Chapter l. 

3.3.1.2.	 0Iher properties 

Suzuki and Ishihata (Suln) consaructed a special purpose theorem prover to check 

array bounds 01 Pascal-like programs. A modiflCalion 01 their technique could be useful in 

establishing the size 01 arrays or sets at compile time. 

4.	 Milchine Gener~tion 

Every compiler has a machine model. Most oIten, this model is embedded in the code 

generator. For example, the code generator for the VAX (Str78) should generate code that 

takes advantage 01 the machine's multiple registers, varying data formats and addressing 

modes. The compiler diK:ussed in this thesis must take a s1iptly different tack; it is generat­

ing machines, not instructions. Therefore, the notion 01 generating code for a machine 

becomes one 01 generating a machine for an algorithm. 

The step taken in this thesis is to generate a so called "Harvard Machine" for the input 

algorithm by transforming the data flow graph into a multi-register machine and the control 

flow graph into a control section that controls the ~ster machine. 

As an example, take the allJOrithm presented in section 1 01 this chapter. The derived 

dataflow graph for this was shown in figure 2.2 above. Now, if each variable (node) in the 

graph becomes a register or operator and each arc becomes a data path, then the graph 

becomes a simple machine as was shown earlier. 

The next phase is the selection 01 the implernenutions for the variables and the opera­

tors. A "conventional" compiler has a machine model and a fixed set 01 resources. The pr0b­

lem there is to generate code for the machine and use as little 01 the available resources as 

possible. The problem faced here is to generate a machine that correctly and efficiently 

implements the input program. 

An architecture is an implementation 01 a computational model. So, after choosing a 

model, the problem becomes one 01 generating an architecture. This will be diK:ussed in the 

context 01 implementation selection. 

At first glance such a machine would be unrealizably large. The purpose 01 the design 

critics diK:ussed in Chapter 7 is to compress the machine by chansing the underlying archi­

tecture. For example, one change mipt be to bus several data paths together. 

s.	 Implemenution IeIection 

5.1.	 ~tchina 

Each library implementation description has a set 01 data flow subBraphs. These 

represent the data flow graph computed by the module for each combination 01 control sig­

nals. Matching must be done between the data flow subBraphs 01 the library implementations 

and the data flow graph 01 the input program. The matching technique will be described in 
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decail in Chapter 4. The result 01 the matching procedure is a pairing between the nodes in 

the data flow graph 01 the program and the nodes in the description 01 the implementation. 

Consider the current example. In order to match thedata flow graph of the program (shown 

earlier in figure 2.2), the subgraphs shown In the figure below must be described in the 

library. 

Data flow subgraphs 

-

1 2 3 4 5 6 

March number
 

Figure 2.4 Required data flow subpaptK for sample PfOlII'am
 

After matching the subgraphs 01 the library qainst the graph 01 the input PfOlII'am, the 

match that results is shown on the next paae in figure 2.5. 

Note that thematching procedure marches bothnodes and types that are -bound- to the 

nodes by type analysis. This has the effect01 partitioning the library by type. 

After matching PfOlII'am nodes with implementation nodes. the next step is to choose 

the appropriate matches. This is commonly called -implementation selection-. 

Figure 2.5 Matched data flow graph 01 sample PfOlII'am 

5.2.	 Selection 

The problem 01 selection is one 01 choosing an implementation from a list 01 possible 

implementations. In SIll, a selection chooses a concrete implernentation 01 an abstract data 

type. For example, a hash table is a concrete implementation 01 a set. Of course, each selec­

tion carries with it various costs, Including time, area and power. The selection process 
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described in chapter 5 uses these par~meters to guide the implementation se~rch. 

Previous work in implementation selection hu centered ~round the use 01 three tech­

niques: heuristic search (low7411ROYI, selection rules (Kan821 ~nd progr~m tr~nsformation 

(P~i831. In heuristic search (the approach taken by this thesis), the selection is done using ~ 

tree search with ~ heuristic ev~luation function. The selection rule systems use production 

rules to do selection based on the preconditions 01 the rules. The program tr~nsfol'lNtion 

technique continually tr~nsfonns the input program until the program can be compiled using 

the implementalions in the library. 

The se~h procedure talles as input a library 01 possible implementations, a machine 

seneraled from the data flow gr~ph, a type interaction table ~nd ~ list 01 global constraints. 

A heuristic search technique is used to guide the selection process. 

The first step is the act 01 binding. Binding is the step where program properties ~re 

used to derive implementation properties. For example, set size becomes the number 01 bits 

in a bit vector implementation 01 a set and so forth. Binding is accomplished through the use 

01 interpretation routines that are specifted as part 01 the library. 

Next, as each selection is made, input/output types ~re checked between the input and 

output ports 01 the chosen implementation. If it is impossible for the siBNls to match, the 

selection will be thrown out. This process continua until either all the nodes in the machine 

have implementations or no selection is po55ible. In the latter case, a design procedure, 

called a ·critic·, could be called in an attempt to resolve the conflict. 

As an ellample, consider the possible implementations for the variilbles and operators in 

the data flow graph 01 figure 2.2. Figure 2.& on the next page illustrates the ·schematics· 

that are available for set implementations in the YASllibrary. 

It is possible for the selectionaJ(IOrithm to terminate with more than one choice and it is 

~Jso possible that _ 01 the selections will be optimal for the problem. 
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Figure 2.& Sample library modules 

6.	 Generation 

Aher selecting implementations for the nodes in the machine graph, the next step is the 

generation of the control section of the machine. It will be shown later that it is necessary to 

deldy control section generation until aher the selection 01 implementations has been made. 

Since the generated machine is assumed to be synchronous, the control of the machine is 



31 30 

Illdd., by 01 microcoded store. The process of control store generation begins with analysis of 

the cuntrol flow graph and the data now graph bound with implementations. The process of 

generating the microprogram proceeds by examining each nodeof the data flow graph for the 

control field of the implementation module. The fields are collected to form the micropro­

gram word, 

Next, the control flow graph is walked from head to tail generating assignments to each 

field in the microprogram word. The last step in generation is to create the control store and 

generate a multiplexer for the jump signals. The conbol section for the sample program (for 

the all parallel implementation) is as follows: 

Microcode Memory 

Control fields for selections 
jump 
conditions jump ne~ 

number possible 
x iterator end 

newlyRelated 
iterator end 

Mtiress 

to data path 

Microcode mt!motyMtiress 

Figure 2.7 Control section for sample program 

The final step is the convenion of the machine graph to a "net list" (a connection list) 

suitable for a placement and routing system. The net list of the example program for the 

binary tree version is shown below: 

5elOfsetOflnt"lr"rSUbtraction: outputDllta/3 to PIlrall"l8etof8etoflrlt"lr"r: inputDllta/4 
Parall"lBI tvect.er-r outputDllta/3 to PIlra11"18etOf8etoflntepr : lnputDllta/4 

Parall"l8etOfsetoflnt"lr"r: outputDllta/4 to 8etof8etOflntaaersubtractlon: inputA/3 
PIlrall"lsetofsetoflnt"lr"r: outputDllta/4 to PIlrallel8etof8etoflnt"lrer: lnputDllta/4 
Parall"lsetOfsetoflntelrer: outputDllta/. to PIlnllelsetOf8etoflntelrer: inputDllta/4 
"lIr"'lelsetofsetoflnt"lr"r: outputDllta/4 to 8etOf8etOflnt.....rsubtraction: lnputB/3 
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"/I y"" "'i,h ro. yoo will h~.., ." OfIPO'lUnlly" 

Chapter 3 

Constraints 

1. Introduction 

The word "constraints" is now a catchword for several different problem solving 

methods in Artificial Intelligence. These techniques will be discussed further in the next three 

sections. The first section introduces constraints and how they can be used in problem solv­

ing systems. The next section covers the use 01 constraints in a silicon compiler. The last 

section discusses relevant past work in constraint based systems. 

2. Introduction to constr~n" ... problem mins 

2.1.	 Represenution 

A conslrdinl can be broadly defined as a re5I1iction that specifies the range 01values 01 

variables in an equalion. It is often easiest to express these restrictions as equations. As an 

example, consider the analog circuit domain 01Stallman and Sussman ISuS7S). A constraint 

in their system might take the form 01an electrical equation involving other nodes in the cir­

cuit being analyzed. In the simplest form, however, constraints can be represented as rela­

tions. An example of this is Waltz' thesis system IWaI7S), where the constraints are restric­

tions on the labelings 01 arcs. Because 01 the differing complexities of the representations, 

different problem solving techniques are used to find solutions 10 tbe conslraints. These 
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It-"lhniques will be covered in the section on relevant work. 

2.2. Use in problem soIVilll 

Given a constraint, the next question is: how does Sill compute the values 01 the vari­

ables in the constraint equation (or relation). Stallman and Sussman use a combination 01 

~ymbohc algebraic manipulation and "propasation" to solve the circuit equations. Here, 

"propagation" refers to using rules to assign values to the nodes in the circuit. When the sys­

tem uses relations, the propagation step is easier. A search technique is used to choose pes­

sible values for the variables. Then, the applicable constraint relations are evaluated. If the 

constraints are satisfied, then the variables are instanllated, otherwise, the variables are 

"thrown out". 

3. Use of constr~nts in VLSI_III 

3.1. Introduction 

Constraints are present at all levels 01 VLSI design. At the bottom level, constraints 

called design rules specify the minimum spacing 01 lines. The next level up is the transistor 

level; e.g, transistor I. must have a ratio 012:1 with transistor~. The next level up are cells. 

Typical inter-<:ell constraints are 01 the form "port q' doesn't have supelbuffers, therefore il 

must be close to its sink". Cells make up modules and module constraints specify properties. 

For example, "module M, port inputA takes parallel, two's cornplernent integers". At the top 

level, modules are connected together to form systems. The constraints at the system level 

are global performance constraints. 

In Sill, lhe Iowesf level 01 representation is the module layer. The inter-module con­

straints have a local nature; they exist between ports 01 the modules that are connected by . 

data paths. These will be called "port constraints". 
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There are also more global constraints. These constraints express the high level perfor­

mance and resource bounds. These will be called -specification constraints". 

Finally, there are constraints that are specific to modules being matched. If these con­

straints are satisfied durillB matching, then the module is matched, otherwise the module is 

not matched. These constraints will be called -matching constraints-. 

3.2.	 Portconstrain.. 

There are two ideas behind the use of port constraints. The first purpose of the port 

constraints is to ensure that other modules connectl!d to the port will be able to -talk- to the 

module (i.e., the ports share common typins). Note that every module in the Iibra'Y has 

semantics (or properties) associllb!d with e«h port. If these semantics are matched, then the 

connection is valid. 

The second purpose of port constraints is to establish data paths between modules. This 

is because when a module description is liven to the system, there are no indications about 

which ports of which modules can connect to a particular port. Therefore, one method of 

connecting ports of modules is to match the types of the ports. 

SpecifICally, consider the use allJI'OII'olm properties in selection. If port constraints are 

defined as bina'Y relations 0IIeI' types, then the consIraints can be expressed as the relation 

-It"~ t2), where t, and ~ are the types of ports. The actual type matching takes place durinl 

selection. Each type of the ports on the .-Iy selected module are traced backward to the 

connecting module. If there isn't a selection ret, then the port is deemed acceptable; the 

type checking will take place when the other module is selected. If the other module has 

been selecb!d, then the type of the port on the other module is compared (using the relation 

-type<ompare-) with the type of the port on the newly selected module. If they match, then 

theselection is permitted to proceed. Otherwise, the selection is put into the -reject bin", 
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For example, take the case of two nodes n. and n
2 

each with a parallel and serial 

implementation. Assume that n. and n2 are connected, i.e., there is a data path between 

them. During the search phase of selection If ", is selected first then attempts to propagate 

the port constraints will fail as n2 is not InstMItIaIed ret. When the search reaches n , then 
2

the port types of n l and n are checked since !hey will both be instantiated. 2 

Note that matching also involves searchillB - each port of every selection must be 

matched against every other port of the connectl!d selections. For example, suppose port A 

has types t l and t2 and port B has types t) and t.. Then, type t is checked with type t) and
l 

then type t.o likewise, this will happen with the type~. The demonstration lJI'OII'am imple­

ments this by using a depth-first search. 

3.2.1. An eumple 

Consider the following subgraph of the data flow waph shown in figure 2.2 (the port 

names are shown in italics). 

Figure 3.1 Data flow subgraph 
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There are two cases to be considered. In the first case, all the terminals (in this case 

related, newlyRelated and found) are selected. In the second case, the nonterminals 

un the subtlraph this is only -) have been selected first. The two tables below illustrate the 

acnons of the propagation algorithm. The notation "check" means that the properties of the 

pons will be checked whereas the notation "110 action" means that no action will be taken 

since the node on the "other end of the wire" is not instantiated. The first case is when the 

terminals are selected first: 

from node to node action taken 
related:outputData -:inputA no action 
newlyRelated:inputData -:input8 no action 
found:oulPUtData -:inputB no action 
-:inpulA related:outputData check 
-:input8 newlyRelated:inputData check 
-:outoutData found:outoutData check 

Table 3.2 Constraint propagation example: Terminals selected first 

Thesecond case is when nonterminals are selected first: 

from nodP 10 node action taken 
-:inputA related:outputData no action 
-:input8 found:outputData no action 
-:OUlpUtData newlvRelated:inputData no action 
related:outputD.ta -:inpulA check 
newlyRelated :inputData -:outputlRta check 
found:oulPt.llD.ta -:inputB check 

Table 3.3 Constraint propaJiItion example: Nonterminals selected first 

3.2.2.	 ConItr•• pretlNplion iIIpilhm 

The algorithm for constraint propagation follows: 

; propagate-constraints takes a search node and propagates as many
 
; properties as possible in the ~ta flow graph.
 

procedure PfOPlIPIe-coIIIIrMlll(search-node) is
 
; Loop through all the marches attached to the search-node
 

forall match-node in the match-nodes
 
of the instances
 
of the search-node do
 

; Now search through the waph 01 the marched node Ioo«in,
 
; for ports.
 
forall parts of the graph of the match-node do
 

if the part (of the graph) is a port then 
; if the port is declared an INPUT port. then BO 
; backward through the graph (to the connectin, 
; connectin, OUTPUT port). 
if the node is declared in the INPUT section then 

foreach connecting-node in 
TraverseGraphFromNode<node, BACKWARDS) do 

propasate-propet1ies(node, connectins-node) 
else 
; if theport is declared an OUTPUT port, then BO 
; backward through the waph (to the connectin, 
; connect in, INPUT port).
 
if the node is declared in theOUTPUT sectionthen
 

fore<lCh connecting-node in
 
TraverseGraphFromNode(node, FORWARDS) do
 

propagate-properties(node, connectina-node)
 
end propaaale-constraints
 

where: 

propagate-properties tries to propafJate all the properties 01 the
 
port-node (which points to the library via its marches)
 
to the connecting-node.
 

procedure ~port-node,connecting-node):
 
; First, make sure that they talk to each otherat the same time.
 
if the control-node of the march-node of the port-node ­

the control-node of the match-node of the Connectins-node 
then 

; loop through all the connected marches, makin, SUit' their 
; instance is selected. 
foreach match-node in march-nodes of connecting-node do 

if the instance of the march-node of the connecting-node 
is in the instances of the search-node then 

PropagatePropertiesFromNodelntoNode(port-node, connected-node); 
end propagate-properties. 

where: 

procedure ~NodeIntoNode(from-node,to-node) is 
; This is only concerned with march in, pollS 
if the to-node is a port then 

if property-compatibiJity(from-node, connected-node) then 
AddPropertiesFromNodeToNode(from-node. connected-node) 
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retum success
 
else
 

retum failure
 
end.
 

and: 

; property<ompatibility tests to see if the properties of two data 
; flow nodes are ·compatible·. This is done with a simple table lookup. 

procedure propefty~tibiIity(frorn-node,to-node) is
 
if compatibility-Tablelfrorn-node, to-nodeJ - OK then retum success
 
else retum failure
 

Note that the procedure TraverMGraphF~goes backward or forward one link in 

the data flow graph depending on ·direction·. AddPIapewtyI'romNodeToNode adds the pr0­

perty list of the first node to the second. 

3.3.	 Matchi.. constr-..s 

After a module's data flow subgraph has been matched with the program data flow 

graph, there are constraints that may still haW! to be tested. Specifically, a.module may haW! 

certain use requirements that should be satisfied before the module is finally selected. A 

aood example of this occurs in the signal processing domain where different implementations 

of a filter haW! different performance (noise, sideblInd suppression, Q, etc.) characteristics. 

These performance crileria are stated as part of the module specification and are checked 

before being officially matched. 

As an example, take the implementation of a set using linked lists. One criterion (con­

straint) for selection might be ·use this if the number of items in the set will exceed 100·. 

This would be specified as part of the module specification as ·(constraint (> size 1(0))", 

Examples of matching constraints can be found in the appendices. The actual checking of 

matching constraints is doneby the search technique (see chapter 5). 

3.4.	 Specific~tion constr~ints 

Specification constraints are specified by the user of the system before selection besins. 

These constraints reflect the goals of performance and resource usase. For example, a 

designer may want a design to fit in a definite amount of area or for certain procedures to be 

performed in a certain amount of time. The former is an example of a resource constraint 

(area < area-bound); the lalter is an example of a performance constraint (time-for-f < time-

bound). Note that both of these constraints are taken to be musts; any design created by the 

system must satisfy these constraints. 

But what happens if a selection is made that violates these constraintsl There are two 

choices: (1) throw it out and (2) try and chanse the design into a worbbIe design. The ·mas­

saging· of the design is doneby special purpose design operators called "critics". These will 

be discussed in much greater detail in Chapter 7. 

Specification constraint checking, like local constraint propaption, is done with e4IICh 

implementation selection. Unlike local port constraints, specification constraints are binary 

relations between a resource and a fixed, measurable bound. The implementation of these 

constraints is discussed in the chapter on search (see section 5.4). 

The computation of time and area bounds in the VlSI domain are complex and can 

only be approximated in the system because of the lack of layout knowledte. Area is 

currently measured by simply addi.. the area 01 the seIec1ed implementations to the current 

total. Real time bounds are much more complex; Sill just adds up module delays. This is not 

sufficient since what is really required is a notion of critical path. The lack of good timing 

measures is discussed in greater detail in the concluding chapter. 
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4. RNted work in constrain.. 

4.1.	 Constrain" in the ....Iysis of circuits 

Sussman and his students used constraint based systems for analyzing analog circuits 

ISuS7SIlSus7). For example, Sussman and deKleer (deS80) used constraint equations to 

analyze reasonably complex circuits. They used heuristic methods Iconstraint propasation 

and symbolic algebraic manipulation) to solve for consistent solutions to these equations. 

Their SVN system is capable of analyzing a reasonably small Circuit, such as a cascade 

transistor amplifier and deriving nrious design parameters. 

These systems are analytic systems (as opposed to generative systems like Slu) and 

depend on the use of complex constraints to analyze the circuits. 

The propasation techniques of Sussman and Stallman have been successfully used in 

the analysis of digital systems. Kelley and SteinberB (KeS82) have implemented a system 

called CRinER that can analyze digital circuits. CRinER uses constraint propagation to 

derive the timing conditions and -behaviors- of the input circuit. 

Unlike the systems of Sussman and students, CRinER uses a simple model of con­

straints and values. This approach is quite similu to the approach take here. 

4.2.	 Constrain.. and .......i... 

In the previous section the application of constraint propagation to circuit analysis was 

examined. In this section, the use of constraints in planning Ithe reader should consult Nils­

son (Nil80) for an introduction to planning) and plan interaction will be briefly discussed. 

Also, the application of planning methods in specific design and analysis systems will be 

analyzed. 

Stefik's thesis [Ste8Ob) lalso (Ste81b) (Ste81a/l used constraint based methods in the 

planning and design of experimenb in molecular biology. Constrainb were used to detect 

the interference of subplans and to reduce the search space of possible new plans. These 

"global" constraints are similar to the -specification constraints" mentioned in the first section. 

like Stefik's MOLGEN program, Sill uses constraints instead of a backtracking search. 

McDermott's thesis (McD771 was directly concerned with the synthesis of elementary 

circuit designs from a plan description. Constraints were used to express design constraints 

and also to express planning preconditions. Theyeffected the planning process by only ~ 

ing those plans that satisfied the constraints. If the constraints could not be satisfied (McDer­

mott called this "constraint collapse"), then McDermott planned on using a planning mechan­

ism to correct the errant plan. This is quite similar to the notion of critics as expressed in 

Chapter 7. 

Brown's thesis (Bro76) dealt with the different probIern domain of debuging circuits as 

opposed to synthesizing circuits. His process of -backtracing- to find bugs in a n0n­

functional receiver is similar to constraint propasation. 

4.3.	 Other Constr_t lYsed methods 

Steele's thesis [Ste8Oa) concerns the design and implementation of programming 

languages based on constraints. However, the work is of little use to the probIern addressed 

by this thesis (partly) because Steele uses constraints as a computational paradigm rather than 

as a technique to cut search complexity. 

4.4.	 Constrain.. and SNlCh 

There is a close correspondence between satisfying local constraints, such as port con­

straints, and the "consistent labeling" (Mac77) probJem of Artificial Intelligence. For each 

choice made by the selection algorithm, the choice must agree with the choices already 

made. Furthermore, all of the succeeding choices must aaree with the choice being made. 

Note that every choice restricts further choices by making the problem more constrained. 
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local constraints were used extremely successfully by Waltz IWaI7S). Using a labeling 

scheme, he used the interaction between labels in a line drawing to drastically reduce the 

search space of interpretations. 

Mackworth IMacn\ restated Waltz' algorithm as his algorithm AC-2 and also presented 

other algorithms that solve the "arc consistency" problem before searching. After applying 

these "filtering" algorithms, the &earch space is reduced because the incompatible choices 

have already been removed. 

Haralick and Elliot (HaE801 used an algorithm that they called "forward checking" to 

see if future selections will cause inconsistent labelings. They claim that forward checking 

will perform better (i.e., less nodes expanded during search) than most search algorithms. 

Nudel (Nud8]) has an excellent paper detailing an analytic approach to these "consistent 

labeling" algorithms. 

The common point eX all these constraint algorithms is that the search space can be 

very effectively reduced by constraint satisfaction. The effect eX the particular constraint 

approach is discussed further in the concluding chapter. 

•tud i. com;n, your ....y. 

Chapter 4 

Matching 

1.	 Introduction 

Sill chooses implementation choices by searching through a library eX template descrip­

tions that describe the behavior (semantics) eX the available modules. The object eX this 

search is to match the modules with parts eX the machine -ll!f'C!fatll!ld" by the input profIJ'am. 

The matcher described in this chapter matches the data flow subpaphs eX the library modules 

against the program data flow graph. Since the library modules can be parameterized, a ~ 

cess called "binding" is used to instantiate the library templates. After binding, the library 

templates (now called instances) are ready for evaluation and search, which is covered in the 

next chapter. 

2.	 ~tchinl the library 

The problem eX choosing implementations begins by matching the library with the ~ 

gram. The data flow graph provides a reasonable representation for the matcher to work with 

because 

111 A data flow graph is language independent, thus isolating the definition eX the library 

from the language 
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(2)	 The ~ta flow sr~ "fits" the problem of matching parts of the machine with parts from 

the library. 

In its purest form, subsraph matching is NPo(;OOlpiete. However, the problem is more 

cOO5trained in Sill: each node in the ~ta flow lV~ has a label. Thee labels allow the 

sraph matcher to run in linear time. Assuming matches are found, il15tantiation of the suc­

cessful matches follows. Note that failure to match eveIY node in the ~ta flow sraph is a 

...... failure, since this Indicates that the library fails to "cover" the ~ta flow sraph of the 

input PfOlVam. As Slated in the introduction to this chapter, the library entries are parameter­

Ized templates. This is because the modules are often of variable size (where the size 

depends on the values of bound parameters). For example, the size of a bit vector represen­

tation of a set is dependent on the maximum number of items in the set. Insaantiation binds 

propertie5 in daq flow nodes to parameters in the library specification for the matched 

modules. After binding, it is possible to evaluate each inSla1lc:e and besin searching for the 

set of insaances that will satisfy bodl the de5l8l'l pis andsemantics of the input PfOlVam. 

:to Graph IIYtehins 

The sraph matcher worts as follows: Each library subtvaph has an "entry node" that the 

matcher U5e5 as a s&art node. FUIthennore, there Is a table that Bives the correspondence 

between node labels and the library enIrieI wilh IhoIe entry node labels. So, the matcher 

process tries to match eveIYsutJsraph of each module description in the library with the pro­

sram ~ta flow sraph for each node In the sraph. The languase used to specify the match 

srapl! is ~y the same as the ianIuaIe used to pnerate the ~ta flow sraph$ (see Appendix 

AI. 

:t.1.	 Ubruy represenution 

A module may have more than one ~ta flow subtvaph because a module may com­

pute more than one result. This is the case with many modules that have control signals that 

dictate which function is computed. For example, a set representation may have size, add, 

delete and membership functions in the same module. Therefore, it follows that the library 

representation should reflect these different functi0n5. 

This is done by describing the module in term5 of the conlrol signal bindinp. So, for 

each binding of the control signals of a module, there is a data flow subsraph that character­

izes the behavior of the module Biven those control signals. For example, the representation 

of the parallel bit vector set reprt!5enlation in the example has six functions: set size, addi­

tion, deletion, membership, aHisnment and initialize (5et to the empty setJ. The ~ta flow 

subsraphs of this module would be: 

deletiOll addition membership assisnment reset size 

Figure 4.1 Data flow sutJsraph of the parallel bit vector module 

The exact syntax and semantics of the ~ta flow sraph description is not of critical 

importance; the full details can be found in Appendix A. 
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3.2. ~tcher oper.tioo 

The graph matcher proceeds from node to node in a depth first manner by following 

both fOlWard and backward arcs. It stops lra'-"!Bing a branch (arc) of the graph whenever 

(1)	 A node has been already traversed (success) 

(2)	 A node label doesn't agree (failurel 

(l)	 A node type doesn't agee (failure! 

Note that whenever a failure is detected, the whole matcher returns a failure. A suc­

cess, on the other hand, indicates that the matcher has gone as far as it can go ilnd that other 

paths should be pursued. It should also be obvious that no node will be traversed twice. 

Note also that In use (l), node types are a direct result 01 property determination ilnd 

declaration. The use 01 node types permits the matches to be restricted by type. 

3.2.1. The IIMtchi.. • IJOritNn 

The miltching algorithm (henceforth ailed the "matcher") assumes the existence 01 the 

following data structures: 

(1)	 A symbol table, containina a map from symbols to nodes in the data flow lI'aph 

(2)	 A data now lI'aph 

(l)	 A control now lI'aph 

(4)	 A table with a map from symbols to possible Implementations and subparts 01 the 
implementations. 

The matcher starts by iterating through the symbol table. The graph matcher works back­

wards from the terminal nodes to the interior 01 the graph. Each match is recorded and asso­

dated with the implementation and the control functions that would "create" the data flow 

subgraph. The matcher algorithm follows, written in a pseudo set language. 

The Match procedure matches up the data flow nodes in the data flow 
,raph with the data now subBraphs in the library. Its side effect 
is to create match nodes that detail these matchinBS. 

procedure MatchO is
 
for each symbol in the symbol-table do
 

for each data-flow-node bound to the symbol do
 
; Find all the lXJ55ib/e imp/ementatiom by looking
 
; them up in the symbol to implementation table.
 
foreach implement, part in the
 

symbol-to-imp/ementation-tableldata-now-nodel do 
Match-from-node(data-now-node, implement, part) 

; Now match usin, the ANY nodes as _II 
foreach implement in the 

symbol-to-implementation-tabielANYI do
 
Match-from-nodeldata-now-node, implement, part)
 

end Match
 

where: 

; Match-from-node tries to establish a match startin, from data-flow-node
 
; to the implementation "implementation" usin, the PiIfI name
 
; "part-nilme".
 

procedure Maic:h-f'OIIHlOde(data-flow-node, implementation, part-name)
 
; fach control now node needs i15 own match, so ...
 
foreach control-ftow-node 01 the data·ftow-node do
 

; fach "sub part" of a implementation (library moduleJ hiis 
; iI ,raph (sub-,raphJ. This is matched iIBiIinst the data flow 
; ,raph. If successful, it creates iI miltch node. 
foreach sub-graph 01 the implementationlpart-name) do 

if Miltc!l-tvaph-(rom-nodeldata-flow-node,
 
control-ftow-node,
 
sub-tlraph) then
 

Match-Check(Create-match-nodeIsub-sraph, implementation, palt-name)) 
end Match-from-node 

where: 

; Miltch-,raph-from-node tries to match the data flow fIlaph
 
; ",raph" starting from the node "data·flow-node". The matcher
 
; succeeds only if the nodes were used by "contlOl-now-node"
 
; The exact details of the ,raph matcher are omitted due to the
 
; dependency on the graph representations.
 

procedure Mat~aph-ftonHlOde(data-now-node,control-ftow-node, graph) 
if the control-flow-node is in
 

the control-flow-nodes 01
 
the data-now-node then
 

(match the graph using the description) 

and: 

; Match-Check tries to determine whether the match is just a new 
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; part of an already existing implementation. If it is a new part, After calling the matcher with the subgraphs of the binary tree implementation, the data flow 
; the it returns the instance of the old implementation, else nil 

graph of the sample program will be matched u shown in the figure below. Note that the 
procedure ~cft.Check(match-node) 

; Search all the possible mak:hes (the union of all the matches numbers next 10 the nodes in the program data flow graph denote the match number of the 
; of all the nodes in the new mil£h-node). 
foreach other-match-node in data flow subgraphs of the binary tree implementation shown in ~ previous figure. 

union of matches of the nodes in the 
data-flow-graph of the match-node do 
; Make sure the implementations match 
if the implementation of the other-match-node ­

the implementation of the match-node AND 
; If so, then if the nodes of the mak:h-node overlap (intersect) 
; with past matches (i.e., matches a/rNdy /Nde), then return 
; the old instance 
the nodes in the graph of the mateh-node intersect with 
the nodes of past-malches of the implementation of the mak:h then 

Add-matclHo-in5lance(mateh-node, insW1Ce of OIher-node); 
end 

3.2.2. An eumple of ...... rndchina 

At this point, an example will help demonstr_the poinl5 made in the previous section. 

The binary tree set implement.atiOn has the data flow subgraphs shown below: 

deletion addition membership size reset assiBllment iterate 

.. 

1 2 3 4 5 6 7 
Figure ".J Match of the dataflow graph and binary tree 

Mak:h number 

Figure ".2 Data flow subgraphs of the binary tree module 
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... Bindingand insWIt~tion 

As stated in the first section, after matching the problem is how to instantiate the tem­

plate by binding the appropriate values to the template variables. As a result of property 

extraction and type declaration, each identiflel' node in the data flow graph has type and 

other properties attached to It. Theseare the properties that are used to bind variables. 

The binding between the template variables and the properties is specified as part of the 

library module definition in the library as a 3-tuple: the variable name, the property and the 

interpretation function. If the interpretation function is absent, then it is assumed to be the 

identity function, i.e. no interpretation is done. An example of a useful interpretation func­

tion is one that takes an inleBer ranae and interprets it as a size. 

".1.	 An ex.vnple 

Consider the implementation of the set variable x (or y) as a parallel bit vector. The 

critical parameter of the parallel bit vector implementation would be wordWidth which is 

the width of the implementation in bits. The relevant property of the variable is the size of 

the set. So, since the size is equal to the number of bits, no interpretation function is 

needed. Therefore, thevariable wordWidth in the implementation template is bound to the 

size of the set which is an established property of the variable. 

More precisely, this is done by naming nodes in the matched data flow subgraphs. 

After naming thew nodes, then the bind section of the library specification can directly 

specify the properties in the named node. A peek at a library definition in Appendix CorD 

will be instructive. 

5. RNted won 
The matching procedure described in this chapter is similar to template matching in 

table driven code generation. It is also similar 10 matching used in widiom recognitionw. 

These related areas will be discussed in the next two sections. 

5.1.	 Table driwen code pner~tion 

Beginning with Cattell's thesis ICat78J, there has been increasing interest in the use of 

tree matching in code generation. Ganapathi, et. al. IGFH82J has an overview of the5e tech­

niques. 

Cattell ICat78JICat79JICat80J implemented a code aenerator aenerator that used heuris­

tic search to choose the tree matching templates for the actual table driven code aenerator to 

use. His matcher was derived from his wMaximal Munching Methodw (MMM) (paee 37 of 

Cattell's thesis), which is a tree matcher that attempts to match larser trees first and then 

recursively tries smaller trees on the remaining subtrees. 

Glanville IGIG78J used an LR parser-like sY*m to do the tree matching. This 

approach is similar to Cattell's, except that it uses parser tables to do the matching. 

Aho and Johnson IAhJ76J used dynamic programming 10 aenerate optimal code for 

expression trees (daBSwithout common subexpressions). Their solution uses line phases. In 

the first pass, cOSlS are assitpled 10 nodes in the expression trees. These cOSlS are derived 

from the code sequences that match the sublrees. The second pass divides the tree into sub­

trees that must have results stored in memory. The last phase actually ae"erates the code. 

Their algorithm is linear in the number of nodes but it is exponential for the number of 

choices at each choice point. 

5.2.	 Idiom rec:opition and other matchen 

Geschke IGes72J also used tree matching in his thesis work on global program optimi­

zations. He used the notion of similarity between trees to automatically place procedures 

inline. The measure of similarity was made by a top.down tree walk of the two trees, com­

paring nodes at every branch. 
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Snyder (Sny821 presented an algorithm that finds and selects "idioms" (commonly found 

subtreesl in arithmetic expressions. The running time for his algorithm is Q(n log nl for worst 

case recognition and Q(nl for selection. While closely related to the problem at matching, 

idiom recognition benefits from several restrictions, which are covered in the next paragraph. 

All at these algorithms share common problems. 

First, all at the above algorithms choose a minimal cost template at each choice point. 

The problem with this strateaY is that multiple paths are not explored, which may mean that 

other more productive paths are ignored. Second, all at these algorithms match arithmetic 

expression trees, not graphs. Third, all at these algorithms compute (choose) one best selec­

tion - there may be more than one, i.e., there may be other different solutions with the same 

metric value. Finally, these algorithms generally assume that the larger the matched tree is, 

the better it is. This may not be true if a collection at smaller matches will do. (However, 

this is probably not often the case). 

'Don'11c!I doubl md SUspKlOII "., )'OU'~. 

Chapter 5 

Selection 

1.	 Introduction 

The previous chapter was concerned with how to match the library modules with the 

program. Once the matcher has found viable implemenution choices, the next step is to 

somehow choose an implemenution for every dau flow node in the program. This chapter 

considers: 

(1)	 how to search through the implemenution choices 

(2)	 how to evaluate possible implemenlalion choices 

(J)	 the effects atsearch and evaluation on the library description 

2. Selection _III INICh 

2.1.	 Introduction 

At this stage, the matcher has found matches between the library and the program. As 

a result ot the matching, every node in the prosram's dau flow graph should have an 

attached set at possible insunces that involve that node. Selection is the process atchoosing 

among instances attached to the data flow nodes. The selection procedure is also responsible 

for checking constraints. 

53 
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2.2.	 The selection procedure 

The selection procedure works as follows: First, the nodes in the data flow graph are 

sorted by the number of instances that use the node. This permits the selection procedure to 

start from the most "obvious" (most constrained) choices and continue to the most "complex" 

choices. Next, the search proceeds from node to node and for each instance attached to that 

node: 

(1) Checks to see if this instance has already been selected by another node 

(21 Checks port types of the new instance 

(3) Checks for overlap of the new instance 

(4) Evaluates the costs of the new instance 

(5) Adds these costs to the costs of the already chosen instances 

(6) Checks each new choice to see if it violates design constraints (and calls critics if it 
does) 

The first step makes certain that the choice has not already been made. This can hap­

pen if the instance involves two or more data flow nodes and some other node has already 

been selected before the node being expanded. This is perfectly permissible and no further 

evaluation is done. 

The second step checks the type compatibility of the new instance and the instances 

that it ·talks" to. If conflicts exist, then the Instance II not chosen. 

The third step is necessary to ensure that the new Instance does not use any of the same 

terminals as any of the existing instances. This prevents multiple representations for the same 

variable. 

The fourth and fifth step evaluate the resources now consumed by the selections made 

so far. 

The last step, step six, ensures that the new addition does not cause the generated 

machine to exceed design requirements. As a side effect, a possibly inefficient machine may 

become optimized in order to meet the design requirements given by the user of SIll. 

3. Se.n:h techniques 

3.1.	 Int~U(i~ 

Search procedures can be broadly divided into backtracking and non-backtracking 

methods (A general overview of search techniques can be found in (Nil80lI. Both of these 

search methods have drawbacks: Backtracking searchs (such as depth first search) can be 

expensive (in time costs) while breadth-first searches are exponential in space costs. 

One solution, therefore, is to choose a search that can run in bounded time and 

bounded space. The idea behind the search used In this work is to use a modified breadth 

first search on an already constrained search space. 

3.2.	 S~ Surch 

As stated above, breadth first search is exponential. One way to surmount this problem 

is to expand only the most promising nodes at any stqe. Lowvene (Low76) used this In the 

Harpy system and called it a ·beam search". (The list of avai~ nodes is called the 

"beam"), Nilsson calls it a .stapd search·. It was originally used by Doran and Michie 

(Dor) in a graph traverser. The problem with a stapd search is that it assumes that every 

step has the same cutoff factor - this Is clearty not the case. When the search !Jeains with 

the most constrained variable, there an! -V few choices. As the search proceeds, the 

number of choices blows up. Therefore, the Idea behind the contraetin, beam search is to 

permit extensive branching at first and to focus (i.e., contract) the beam as the search 

proceeds. The purpose of the contraction is to allow as many constraints to interact as possi­

ble during the beginning stases of the search, but al the search pI'OBreSSe5, to count on con­

straint interaction to bring the search within bounds. 
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1.1.	 Stqed surch analysis 

Nilsson (Nil80J uses two measures of search performance: penetrance and branching 

factor. Penetrance simply is the total number Ii.e., the sum) of nodes expanded divided into 

the path length ("levels· expanded). The branching factor assumes that pruning is not done at 

each stage of the search - of course, that is exaetly what does happen during a staged search, 

therefore, this measure makes the most sense fof a dep«h first search or a full breadth first 

search. For pruning algorithms such as the staged search, a different measure, called average 

branching factor can be computed. This is the total number of nodes expanded divided by 

the number of expanded nodes. For a search without pruning, this ratio is 1:1. Since the 

pruning technique used here depends on the beam cutoff and on the constraint interaction 

between selections, it is always less than 1. 

Because the beam search operates using such fixed bounds, it is relatively easy to esti­

mate performance parameters such as penetration and branching factor. The analysis is as fol­

lows: Assume that there are n choices to be made. Then, the depth of the search tree is n. 

The number of nodes expanded is dependent on both the number of available implementa· 

tions and the interaction between the constraints and the implementation choices. To com­

pute the maximum assume each implementation has Ie choices. Then, each step generates b 

(beam size) • Ie choices. This, multiplied by the dep«h gives the absolute maximum number of 

nodes expanded (upper bound). This I, 

N-b''''n 

Note that this assumes that there are no interactions between the port constraints of the 

library instances during the search. It also assumes each variable has the same number of 

library instances. While clearly not realistic, it is sufficient to derive an absolute upper 

bound. 

A contracting beam search expands fewer nodes as the search proceeds. Therefore, the 

total number of nodes expanded, N, becomes: 

i-n 
N= ~1e·C(i) 

I-I 

where cm dictates the size of the contracting bNm. Now, let 

C(i)-(n -i+ l)"1e 

i.e., cm is a linear decreasing step function. Then 

N _lel(nl+n). 

Note that in this analysis cm is assumed to be linear with i. Such a restriction need not 

apply, but it does make the analysis easier. 

1.4.	 S..... INICh IIINIUremenb 

This section discusses the measured performance of the beam search while finding a 

solution for the sample program. Measurements were taken of the branching factor and 

penetrance while the search took place. The figure on the top of the next pase is the tree of 

choices for the sample program and the iaIOpie library. The iaIOpie library is an abbreviated 

venion of the normal VASL library - it only has a simple set of selections (only one serial and 

parallel implementation for a set.l. 

The figure on the boaom of the next pase illustrates the number of nodes expanded at 

each level. 
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3.4.1. The SNICh ~ 

The following algorithm is the search algorithm used by SIll: 

procedure SNrdt() is 
o\d-node-list :'" nil; 
; Firsl, JOlt accOldin, to the number 01possible Implementation choices 
; ("'insunces") 
sort search-nodes by number 01 instances into node-Iist; 
foreach node in node-list do 

new-node-list :'" CrossProducUnode, oId-node-list); 
; Now, JOlt them by the metricso dlat the most promisin, ones ate 
; at the head 01the list 
sort new-node-list by score: 
switch search-type into 

case CONTRACTING:
 
tNncate new-node-list at
 

maximumBeam5ize - level • beamlncrement;
 
reject tNncated nodes:
 

case 5TAGED:
 
tNncate new-node-Iist at maximumBearnSize;
 

case FULL:
 
end; 01switch
 
old-node-Iist :- new-node-Iist;
 

end; 01 foreach
 
end Search;
 

where: 

; CrossProduct does exactly what its name implies· it mums the
 
; ClOSS product 01the input node and the list 01nodes.
 

procedure erc.Product(node, Iist-ol-nodes) is 
; If the list is suttin, our. initialize it 
if Iist-ol-nodes - nil then return node 
else 
; Next,. check to see 01 the inSWlce has already been chosen 
; (/1'5 possible that two data flow nodesem share... implementation) 
if the instance 01 the node is in 

the instances oIlist-ol-nodes then ignore 
else 
if Overlapslinstance 01 the node, instances 01the list-ol-nodes) 

then ignore
 
else
 

retum NewEntry(node, Iist-ol-nodes)
 

where: 

; Overlaps checks to see 01 the data flow graphs 01the insLJnces
 
; overlap.
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procedure Overbpl(instance, instance-list) is
 
foreach other-instance in instance-list do
 

if nodes of instance INTERSECT with
 
nodes of other-instance then
 
return success
 

else
 
retum failure
 

end Overlaps
 

and where: 

procedure NewEnlry(new-node, past-nodes) is
 
; fir5f, check 10 see if the node is already there
 
if node is in pa§l-~ then retum
 
else
 
; If there aren't any other nodes, then create one for sure
 
if past-~ .. NIL
 
then 

create new-search-node;
 
score new-search-node;
 
; Here Is where properties are propagated
 
if PropagateProperties(new-search-node) then
 

reject new-search-node; 
; and S/ubal constraints checked (and maybe critics called) 
if ConstraintFailure(new-search-node) then 

reject new-search-node;
 
end NewEntry
 

where... 

procedure ConIIrMfililure(search-node) is 
; To check the global (performance) constraints, check each constraint 
; against the design. If any constraint fails, then call all the 
; critics associated with the constraint. 

foreach Blobal-constraint in g1obal-constraint-uble do 
if Check.(:onstraint(search-node, gIobal-constraint) then 

foreach critic in critiC' of gIobal~nt do 
CaIlCritic(critic) 

; Now check the global constraints asain; if they're still unreasonable 
; then return failure ... 

fOl'each global-constraint in global-constraint-table do 
if Check.(:onstraint(search-node, gIobal-constraint) then 

retum failure; 
retum success 

3.5.	 Put work in seledion 

3.5.1.	 Automatic seledion of cia.. llructures 

Low ILow74) was one of the first works in automatic selection of data structures. His 

system chose set and record implementations for a subset of LEAP IFeR69). His system used 

both analysis and simulation data to derive estimates of ellecution speed of the input pro­

gram. The selection search alBorithm was a hill climbinB depth first search that pursued a 

minimal cost function. The search evaluation function included a function that reflected the 

swappinB allJOl'ithmof the host machine. 

Low's work has several limitations worth nocinB. First, he did noc permit arguments of a 

function or operator to be of more than one type. For example, a set union operator must 

have compatible input data types. Also, each data type representation has only one imple­

mentation for a Biven operator in the Iilllary. low did also noc permit multiple representa­

tions for a Biven variable. This contrasts with this work, where there are many possible 

representations (implementations) for both operators and operands. 

Low's work was extended by Rovner IRov) to the domain of relational data structures by 

addinB redundant representations and multiple access paths to data representations. He also 

instituted a two step selection scheme where implementations are constructed from primitives 

found in the library. Note that Slu does noc do two step selections. This is because the VLSI 

domain encourages the desisn of hiBhly compact and specialized parts. BuildinB library parts 

from smaller parts could be done, but would probably be much more expensive lin both time 

and area) than a circuit desi(llled specifICally for thai task. 

Rowe and Tonll! IRoTI developed another two stase refinement system that synthesized 

data structures from primitives. Each data type was represented by a "modeIinB structure". 

These "modeling structures" were then used to synthesize the data structure from the Iilllary. 

Their selection phase used a branch and bound search to do the actual selection. Their use 
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of a branch and bound search closely resembles the approach taken here. 

Tampa and Ramirez (ToR80) developed a dynamic programming approach to data 

structure selection. Ramirez' thesis (RamBO) analyzes this method and other problems in 

aU1Dmatic data structure selection. 

The SEll (SchSII group used a technique they called "basing" (DGl79) where sets can 

be represented by an auxiliary data structure called a base. A base can be further specified by 

declarations that use the base. Thesedeclarations indicate (indirectly) the actual implementa­

tion. More recently, Schonberg d. at (SSS81) developed an algorithm that automatically 

chooses bases for SEll programs. Note that the basing scheme allows runtime typing and a 

type analysis algorithm (such as thosementioned in Chapter 2) must be used to asceltain type 

information. 

The basing system refIeclS a number of restrictions inherent in the SEll design. In par­

ticular, there are a small number of implementation possibilities and the selection techniques 

reflect this by the limited number of specifications for bases. 

3.5.2.	 Automatic ................ 

Kant's (Kan82) LIBRA system was part of a lareer aU1Dmatic programming system called 

PSIIGre76). Kant used production rules 10 bolb analyze the program and senerate implemen­

tation structures. The approximalely <tOO rules were divided into two basic catepies: 

"searching knowl." and "building knowledle". The "searching knowledae" was further 

divided Irlto resource rnanaaement and plausible implementation rules. The "building 

knowledae" was divided into coding and analysis rules. 

Kant emphasizes the use of production rules in analyzing as well as synthesizing pr0­

grams. Sill uses property extraction, declarations and occasionally user input to supply the 

analytic results. LIBRA also uses production rules for the selection - Sill uses a heuristic 

search algorithm. Also, LIBRA uses production rules to express constraints where Sill uses an 

explicit representation of constraints. 

Kant's system was really developed for an experimental environment - her, system is 

very flexible but also very expensive. She concluded that systems with single levels of refine­

ment (like Sill) would perform adequately using search techniques like the ones described in 

the previous sections of this chapter. 

4. Metric' 

4.1.	 Int~ 

AI. each stase of the search, an evaluation function is called to assess the resources 

being used at that level of the search. These functions are called "metria" and they guide 

the search by "measuring" the resources consumed by each collection of instances. 

The design of a metric involves two factors: 

(1)	 fairness - the function should not permit unworbbIe soIution1 to achiew! high scores 

(2)	 accuracy - if possible, the metric function should N!CUm a value close to the "real 
world" resources consumed. 

The last condition is required because the ...1 (resource) constrainls thatthe UM!l' pr0­

vides are in terms that the user understands. Therefore, the Iystem and the UM!l' must qree 

on the cakulation of the metrics, otherwise the critics will be either called too often or not 

called often enough. 

4.2.	 VLSI metria 

One problem with VlSI metrics II that they are technolotJy dependent, Le., an evalua­

tion function for NMOS is not the same as an evaluation function for CMOS. Therefore, one 

must be careful in choosing a function that reflects the resource tradeoffs of the implementa­

tion technology. Many theoretical studies have been made of various resource bounds. 

While these are nol directly applicable, they can provide a basis for developing a proper 

metric. 
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Most 01 the recent work in VLSI theory (Tho8OIILiS1I8au8111ChM811 uses a complexity 

measure 01 ATl where A is the area 01 the circuit and T is the time required to compute the 

result. This idea was extended to the diBital sipl processing domain by Cappello and 

Steiglitz (cas~U) who used a complexity measure 01 ATP, where P is the period 01 the com­

putation. Note that the period 01 a pipelined function is much less than the period for a 

non-pipelined function because 01 the hisher throuahput possible when the pipe is full. 

There#ore, !his metric function fal/OfS pipelined implementations. 

In S1u, wire areas are unknown until the placement and routing subsystem has been 

run. Therefore, it is not possible to obtain accurate figures 01 area consumption. As a result, 

the scheme behind the metria actually used by SIu is to total the resources consumed by the 

non-wire portions 01 the machine lthe modules) andestimate the.wire U§aJe. 

4.3.	 Actual metria 

The previous chapter on binding detailed how the instantiated modules are used by the 

metrics to calculate the evaluation parameter. Each 01 these actions has an impact on the 

specification 01 the library. 

As stated earlier, most library modules are parameterized so that the compiler can gen­

erate arbitrarily wide instances. The metria also haw an impact on module specification. 

Each module mull haw its height and widlh specified so that area can be computed. Of 

course, the heiaht and width formulae can be parameterized wi!h the module parameters and 

bound later. Area computation may also InvoIw some overhead, so that must be included 

also. 

•As an example 01 the library specification details explained above, consider the exam­

ple library. The sample parallel bit vector let representation would have the following area 

calculation: 

(area (width (ti~8 20 n)) (heiiht 100)) 

Likewise, timing parameters can be specified: 

(timing (delay n)) 

After the parameters have been bound, these functions can then be evaluated and used 

by the metric functions. 
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·Very soon .ttd in p~...nl comp.Jny" 

Chapter 6 

Machine generation 

1.	 Introduction 

The previous chapters have covered the various modules that cOlnprise SILl. In this 

chapter, the underlying architecture 01 the generated machine is discussed. After consider· 

ing the architecture, the final stI!ps 01 data path creation and microcode generation will be 

considered. 

2.	 Machinearchitec:ture .... modelsof computation 

Behind every machine architecture Is a model 01 computation. Most 01 the machines 

that are in use today are von Neumann machines; they have a control store, a memory that 

holds bod! program and data and an arithmetic unit that is under the "direction" 01 the con­

trol store. If the memory is partitioned Into separate areas for prosram and data, then the 

machine is known as a "Harvard Machine", after the Harvard Mark I. The next two sections 

present the model used by SIll and an overview 01non von Neumann models. 

2.1.	 Hilrvanl mKhines 

The work reported in this thesis has assumed a certain cOlnputational model. This 

model will be called a "maximally parallel" Harvard Machine. 
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"Ma"imally parallel" means there exists a unique data path between the expression 

computed by the right hand side of an assignment statement and the variable on the left hand 

side. It is maximal because fOl a given protP'am, there may be any number 01subtrees 01the 

parse tree that COlnpu!e the same expression but do not share operator nodes. A simple way 

to express this is "There is no sharing 01operator hardware". 

Although there are no shared data paths in these machines, the input prosrams 

presented to Sill are serial. This is due to the basic sequential nature 01the input languages. 

There is an extensive body 01 literature concerned with analyzing and optimizing prosrams 

for parallel sections IPKl80J. Such techniques could be 01 use in constructing parallel 

machines. The effect 01 language design on architecture will be discussed further in the con-

elusion. 

A crucial property 01any sequential machine is that the machine not execute two con­

flicting instructions at once. "Confticting" mNIlS that a varllble is being accessed or being 

stored into by more than one data path. Since the control unit directs the use 01 the data 

path section 01 the machine, the prob\em becomes one 01 generating microinstructions that 

do not cause conflicts. This is easily done and will be discussed further in the section on con­

trol store generation. 

2.2.	 Related wort in non won Newnann machines 

There has been considerable work in the last few years on non von Neumann architec· 

tures. In particular, reduction and systolic machines are being touted as reasonable models 

fOl VlSI implementation. 

2.2.1. Oil'" flow ....chines 

Data flow machines are (among other things) a reaction against the serialism 01 register 

transfer machines. The serialism is due (in part) to the serial access to central memory (the 
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famous "von Neumann boaleneck"). In data flow machines (Den791, the results of operators 

are computed when the operands are present (ready). Therefore, it is possible that multiple 

operators can be actively computins at one time. A1thoush some machines have been con­

structed, data flow machines remain I.y experimental. Some of the issues involvins 

data-flow machines can be found in Dennis (Den791 or the survey paper of Treleaven 

(TBH821. 

How to compile "alsorithmic" lansuases to data flow machines is another issue. 

Arvind (Arv791 discusses how to compile a dataflow lansUil8t! into a multiple processor data 

flow machine. His paper takes extenSive advantase of the fact that the lansuase has no side 

effects. The effect of this "feature" on the architecture of machines will be discussed further 

in theconcludinS chapter. 

Also, the work beinS done on the desisn of data flow lansuases such as VAL 

(AcD79IlAck821 reflect some basic tenets of multiprocessinS such as explicit parallel opera­

tors and a lack of aliasins. Such lanSlJil8l!5 would be just as useful in S1u. 

1.1.1.	 Reduction Machines 

Both control flow and data flow machines have a similar idea: data flows from sources 

to sinks throush operators. Reduction machines are different: operations are performed by 

need. Reduction machines are desipted to execute reduction lansuases (Bac781. More work 

needs to be done on how to write proarams usins reduction lansuases as well as how to 

compile such prosrams into machines. further details on some reduction machines can be 

found in Treleaven's survey papers ITBH82IlTre821. 

1.1.3. Systolic: lIWlChinei 

Systolic machines are essentially pipelined multiprocessors without a centralized con­

trol. Data is "pumped" from one computational unit to another with each clock tick. 

Because the machines are pipelined (after a fashion), data rale5 are higher than equivalent 

sequential implementations. KunS (Kun8l1 and Cohen (Coli are vocal exponents of systolic 

machines. KunS points out thefollowins features of systolic models: 

• Makes multiple use of each datum 

• Uses extensive concurrency 

• Only a few simple cells are needed 

• Data and control flow are simple and reaular 

VLSI desisners find the resularity of systolic architectures very appealins. 

Althoush systolic machines are a powerful use of VLSI teehnoiOBY (for the reasons listed 

above), limited work has been done on how to compile prosrams into systolic a1sorithms. 

Moldovan (Mo1831 has recently shown how to compile loop computations usinS arrays into 

systolic arrays. Leiseoon and Saxe (LeS8l1 present an alsorithm that convet1S a non-systolic 

system into a systolic system. 

It should be noted that systolic alpithms are a subclass of all a1sorithms; not all alao­

rithms can be (or should be) expressed in systolic form. In particular, systolic alsorithms are 

well suited to some computationally intensive array alpilhms. 

3.	 MKhine Gener~tion 

To recapitulate, the stase is nOw set for the actual seneration of sisnal paths; the pro­

gram has been analyzed and the selection of implementations has been made. Machine sen­

eration besins by considerins the control paths. 

3.1.	 Control JM"" 
The control paths of a seneric machine are shown in the fiSUre at the top of the next 

pase. Notice how the jump sisnals senerated by the data path section are used to control the 

microprosram counter. The microprosram counter is used to address the control store, which 

in tum senera1e5 the satins sisnals for the data path. A sinSIe level scheme such as this is a 
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FiSUre 6. 1 Ge!leric control section 

very simple control store; many more complex and different controller schemes are po55ible. 

A review of microcode controllers can be found In Dassupla lOas8O). Burtle IBur82) and 

Wilner and Parker IPaW81) have discussed virious microstore orpnization for VLSI, particu­

larly thole with encoding schemes (such as that found In the MC68(00). 

When the data flow nodes In the prosram wese being created by thedata flow analysis 

procedure, they wese taged with the conb'OI Row node that was "active" at that time. For 

example, in an assignment statement, all thedata flow nodes on the risht hand side (as well 

as the data flow node on the left hand side) would have the name of the assignment node in 

the control flow graph attached to them. 

Recall that thedata flow nodes also have a list of instances that "involve" the instance. 

Therefore, it is po55ible to taB each instance with the control flow node via the data flow 

nodes. As a result of this tagging, it is now possible to taB the control flow nodes with the 

instances that "involve" the node. 

Each control node also has a label that is used to determine how generation is done. 

These labels are generated by the control flow analysis procedure. Only the NODE and TEST 

nodes geoerate control fields. The remaining node labels (LOOP, LooPBACK and EXm are 

used to control the program counter (PC) field. For more information on the labels, see 

....ppendix A. 

Note that each match node is a specific "subsection" of a library module· in particular, 

these matches have bound control signals. These slBllals are the fields that must emanate 

from the control store. So, control field eeneration is simply emitting the control bindings of 

every match of every instance of the implementation of a library module. The last matter in 

control field genet'ation is the assignment of the microprogram counter field. Each control 

flow node has two pointers to other control nodes. These pointers are the "success" and 

·failure" pointers. Only the TEST nodes use the failure field. This field becomes the prosram 

counter field. As a default, the microcontroller assumes that the control word after the 

current control word will be located at the current prosram counter + 1. 

It is important to note that the current scheme at control flow eeneration does not solve 

the problems of precedence. For example, the statement 

a :. a + 5 

will generate a simultaneous load and stole infO the implementation of a. This problem is 

easily solved: all that is required is a procedure that detects such conflicts and moves the 

appropriate conflicting operation down in the control store. (In this case, it would be the 

storel. 

Notice that this control store is not compacted in any way. A useful addition at this 

stage would be a microcode optimizer that would move microcode fields upward in the con­

trol store. A review of microcode optimization as of 1976 can be found in Agerwala 

[Age761. Fisher's trace scheduling [Fis81) is an example of more recent work. 
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J.1.1. Control Store Gener.tion 

The following algorithm describes the conllOl §tore generation algorithm in the pseudo-

set language. 

; In Con/lolStoreCeneration, a.b denotes the field b of a. 

procedure CGnIroIStoreGeneration i§ 
foreach node in the control-Row1Vilph do
 

word := NewControlWOI'dO;
 
§witch label of node into
 

case lOOP:
 
word.success - node.succe§s;
 

case EXIT:
 
word.success .. node.success;
 

esse TEST:
 
word.success - node.success;
 
word.fililure .. node.fililure;
 

esse defilult: ; MUST be a ordinary node
 
word.success .. node.success;
 
; Now, lor all the matches of all the insLJnces for a
 
; given con/lOl node store thecon/lOl signal bindinss
 
; from !he implemenLJtion.
 
foreach InsLJnce in instance§ of §eill'Ch-node do
 

foreach match in matcbes of the 
; This selects only the miltch nodes that effecr thar 
; thepillticu/ar insLJnce 
insLJnce INTERSEa miltche§ of the node do 

; Srore field value (field name - control field 
; of match.part) by the instance. The "implemenLJtion" 
; is thedescription of the library module. 
word.insLJnce . control of match.pilrt : ­

irnplernerUtion of Il\illCh.impiements; 

Note that this omits the generiltion of the jump fields ilnd compression of empty nodes (nodes 

without any control fields, just jump fields). 

As an eXilmple of coouol field generiltion. consider the eXilmple prosram. The gen­

erated field§ for one of the illI pilrallel solutions is shown in the table on the next page. 

PC b.J~ newlvRelated related found x v test next PC 

0 reset 

1 load store 

2 nrwlvR.et.eed .,. PHI 12 

J reset 

4 reset 
5 test 

& iterate store ..... end 10 
7 reset 
8 test 

9 iterate !itore 1ter~1Df end 12 

10 load with 
11 §lore load load 
12 

Table &.2 Microcode fields for Silmple prosriVll ilnd library 

4.	 0 ... pilths 

The previous section has shown how fO construct the control pilths ilnd the control store 

for the machine that implements the input prosrilm. The liISI task is the generiltion of the 

data pilths between the modules. 

OaLJ pilths are informillly e§L1blished durinS §election. As each §election is made, iI 

data pilth is inferred between the ports of the new §election ilnd the ports of the §elections 

connected to the new insLJnce via the dilti1 ill'CS in the dilti1 flow srOlph. 

It now remains to generilte the final output, the net list. 

5.	 Gener.tinB net lists 

Net li§t generation is performed in two >tiIFS. FiiSl. the connections are made for every 

port in every instance (except for control ports). This e§L1b!ishes the daLJ pilth §eCtion of the 

machine. Second, the output control ports of every instilnce ilre connected to the jump field 

multiplexer (see fisure &.1 in §eClion ]). Now, the conllOl fields from the control store are 

finally connected to the insLJnces they control. As a last step, the control field of the jump 
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"Work only lot !he bc!sr. rhink only 01 rhe brst MId8p«t only IIIebermultiplexer is connected to the jump control field. 

Chapter 7 

Design critics and Machine modification 

1.	 Introduction 

The machines that have been created 50 far are notable beause they waste one valu­

able resource: area. No data paths are shared and no conIn>I fields are compressed. The 

intention of the design critics is to improve (or optimize) the maximal machine that was 

created by previous stages of the system. 

The notion of critics is not unlike the optimizins pass of a more conventional compiler 

- except that critics do ..... sweep over the prosram like a compiler. Rather, they are called 

"as needed" whenever a conflict arises between user desllPl constraints and the resources 

consumed by the circuit. This diffeR from the two previous use of critics in the p1annins 

literature. 

Sussman ISus751 coined the word "critic" to mean bodies of Lisp code that attempll!d to 

reconstitute the plan whenever a suspicious, bullY plan was added to the Conniver IMcS721 

data base. Specifically, critics were attached to IF·ADDEDdemons in the Conniver database. 

Sacerdoti [Sac751 used critics to detect non-workins plans and to optimize plans. He applied 

critics at the end of each p1annins cycle rather than when a bad plan was detected as Suss­

man did. Sacerdoti also applied all of his critics at one time - Sussman only applied the critic 

called by the trap set in the data base by the IF·ADDEDmethod of Conniver. 

7S 
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The critics proposed for use by Sill (the critics gallery WilS never implemented) ilre simi­

lilr in spirit to the critics 01Sussman. They ilI'e to be ilpplied, one ilt il time, whenever il con­

flict exists between il g10bill constrilint (il resource bound) ilnd ;an implernentiltion 01 the input 

proBJ';arn . 

2.	 How critia ue used 

As stilted ilbove, critics ilre used to force the resources consumed by the compiled 

milchine to be within limits. Critics ilre cililed most often when iln implernentiltion selection 

is milde thilt violiltes il gIobill resource constrilint. 

A critic should hilve access to three types 01inforl1liltion: 

(1)	 A list 01 currently selected instilnces - This list Ciln be used by the critic to find the 

implernentiltion selection thilt cilused the conflict. (Irs quite likely thilt the selection 

thilt trigered the constrilint violiltion is not the selection thilt reillly uused the con­

strilint fililure, then!fore, il critic should check illl the selected implementiltions). 

(2)	 The current diltil flow srilflh 01 the diltil path section 01 the milChine. One purpose 01 il 

critic is to chilnse the underlyins milChine 10 thilt the resource constrilint is Siltisfied. 

Therefore, the critic must be able to reild (ilnd chilnse) the diltil flow srilph 01 the 

milChine. 

(3)	 The eXilCl constrilint thilt fililed. This il 10 the critic can determine Whilt procedure to 

follow. Note thilt since il resource constrilint can be an ilrbitrilry expression, il critic 

Ciln be cillled for ilny number 01complilints. 

3. Pouible critia 

This section sugests il list 01critics thilt would be useful in Sill ilnd describes how they 

would function. 

3.1.	 D.... fMth oper.ton 

3.1.1.	 0.... fMth bundlins 

The class 01 Hilrvilrd Milchines discU55ed in the previous chapter is notable for their 

lack 01businS. BusinS is used by computer uchitects to overcome the cost 01 implernentins 

every diltil path between nodes in the diltil flow srilflh iIS il separilte path. This is ;accom­

plished by wrins (time-division multiplexinBl diltil paths under the control 01 the control 

milChine. Oiltil paths should be -bundled- tosether If they ilI'e infrequently used. 

TomS ilnd Wilhelm (ToWn) presented il dyn;amic prosrammins solution to bus illlOCil­

tion. While their illsorithm is optimill, it involves iln expensive combiniltoriill 5eilrCh. A 

simpler busins il1sorithm was developed by TsenS ilnd Sieworek (TsS81). Their technique 

creates buses one ilt il time by tryinS to assisn ill milny diltil paths to il new busbut without 

introducins delily5 (and reducinS concurrency). TsenS ilnd Siewon!k's procedure would be 

extremely useful to Sill. 

Note thilt while businS reduces wirins i1reil, there mily be ildditionill costs 01 ilddinS bus 

drivers if the units thilt ilre bused do not hilve bus drivers. Note illlO thiIt the busins critic 

does not know about -passthroush" functions. Passthroush functions ;are oper;ations thiIt tum 

il functiOnilI unit into il strilisht throush connection, t.e., no operiltions ilre performed ilnd 

data is "passed throush" Such functions mUe "indirect paths" (Toms ilnd Wilhelm's term) 

possible. 

3.1.2.	 FunctiorYl unit Ihui... 

Besides not shilrins buses, the uncriticized milchine doesn't Wre functiOnilI units 

either. FunctiOnilI unit shilrinS c;an lake pI;ace when two (or more) functiOnilI units ilI'e identi­

cal instilnces; i.e., their parilmeters ilre the SillIIe. 
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Note that sharing a functional unit may have a time penalty - an operation that was 

formerly performed in parallel may now haYe to be performed serially because the functional 

unit	 must be shared among two computations. This type of tradeoff is very difficult for the 

system to make. 

The sharing of functional units could be performed by searching through the selections 

and trying to find two selections that are equivalent, i.e., the properties attached to the ports 

are idenlical and that the units are of equal size. 

When the decision to share a functional unit has been made, the shared functional unit 

must have multipleXers introduced on the inputs. The space tradeoff for this is the cost of the 

multiplexers YerSUs the cost of the ~itional unit. In all but the most extreme cases, the cost 

of the multiplexers is very !llN1I compared to the cost of the ~itional functional unit. The 

exact algorithm is as foIlow1: 

; FindllndShare takes thewhole list of MinstancesMand tried to 
; find units that can be shared. 

procedure flndAnd5hare(instances) is
 
foreach first-instance in instances do
 

foreach second-instance In instances - first-instance do 
; If lhe two instances are instance of thesame library module 
if the Implementation of the first-instance ­

the implementation of the second-instance AND 
; and theparameters march... 
BoundParametersMarch(first-lnstance, second-instance) AND 
; and the instances aren't used a' thesame time... 
control nodesof first-instance INT£RSECT 
control nodes of second-instance - Nil then 

Create a multiplexer for all the inputs of first-instance 
Connect the inputs of the first-instance to the multiplexer 
Connect the inputs of the second-instance to the multiplexer 
Connect the outputs of the first-instance to the destination 

of the second-instance ;(this assumes tri-state busing)
 
Get rid of second-instance
 

end
 

where: 

procedure leundP.aaneIeFIMAtc:h(first-instance, second-instance) is
 
foreach parametl!r in the library description of first-instance do
 

if the value of the parameter in first-instance ..
 
the value of the parameter in second-instance then
 

return false;
 
return true;
 

end
 

3.2.	 PipeliniRB 

Register transfer machines have problems with data rate. This becomes apparent when 

one considers that data must flow from the input node to the output node over a number of 

computational steps (sequences). So, at a minimum, the output data rate is proportional to the 

length of the microprogram. (This assumes no loops). At wont case, the output data rate is 

proportional to 

t 
non -loop + ~ loop Ii )en Ii) 

1-1 

where loop/it = loop sectionIi) 
and n/i/ = maximum number of iterations for loopsection i 
and l	 = number of loops 

The output rate of a register machine can be improved by introducing latches at the 

beginning of each stage. Hence, partial results of a computation can be held in several 

stages, similar to a production line. An introduction to pipelining can be found in 

Ramamoorthy's survey lRal77). Koge lK0s8l1 is an extensiYe reference. 

Pipelining can be easily introduced Into the machine by the introduction of latches 

(called "staging latchesM) at the input and output ports of every instance. The control of the 

staging latches can be done easily by the control store. HoCvever, there are several problems 

with pipelined machines. First, conditional statements cause branches, which break up the 

data flow. Second, feedback loops in the machine can cause the machine to wait for data to 

be fed back. Third, loops in the microcode can introduce delays (and subsequent loss of 

throughput) by keeping functional units busy that are fed by data paths above the loop. Such 

delays must be compensated for by memories such as queues. 
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leiserson and Saxe IleS8l1 have developed an algorithm that converts semi-systolic 

machines into fully systolic machines. Their procedure makes use of the notion of adding 

delays ("retiming") to the arcs that connect operaton. A similar form of retiming could be 

useful in the transformation of register transfer machines to pipelined machines. 

Although no pipelining critics were implemented, the system could have benefited from 

the use of both an algorithm fcK the insertion of staging latches and shimming delays. Such 

critics are a necessity in the digital signal processing domain where speed is often of the 

utmost importance. 

3.3.	 Pinout limiutions 

Although VlSI circuits are Increasing in complexity, there are fundamental physical lim­

itations that prevent the implementation of certain circuits. Pinout limits are an example of 

such a physical limitation. Pinout limits are a result of packaging limitations. Any circuit 

that is designed by a VLSI compiler must not exceed the maximum number of pins for a given 

packaging technology. The fundamental technique for avoiding pinout problems is to multi­

plex pins. This is commonly done in many commercial microprocesson. Of course, this has 

its price - it limits the data rate through the multiplexed pins. The pinout critic would be 

called when the number of pins exceeds the package count. The number of pins currently 

used is simply the number of signals (ports) without attached ports. 

3.4.	 Control section operaton 

3.4.1.	 Optimization 

As pointed out earlier, although the data path can operate in parallel, it is strictly lim­

ited by the serial nature of the control machine. Recall that each microprogram word 

"represents" a statement in the input program. It is possible that some fields in the control 

store may "lie fallow" which the remaining fields are used in the computation of the state­

ment. These unused fields may be used in subsequent computation, so it pays to try and 

pack these fields as tightly as possible. As mentioned in the previous chapter, This brings in 

the whole realm of microprogram optimization. Dassupla IDas80J and Aserwala IAse7bJ 

have fine reviews of some of the techniques in use by microprogram optimizers. DaVidson, 

et. al. IDlS81 J performed some experiments on compacting horizontal microcode (such as 

that generated by Sill). The application of their techniques to the output of Sill would be 

extremely advantageous, as control store compaction cuts area of the control store ROM. 

3.4.2.	 Field encodi"l 

Another possible optimization is to encode several control fields together. This is par­

ticularly useful when there are many one bit control signals of which only one is active at a 

time. If this is the case, then 2ft signals can be encoded as n wires plus the overhead of 

decoders. These decoders are placed at every use of the encoded control signals. Saunders 

ISau79J describes a similar optimization that can be perfonned when constructing specialized 

interpreters. 

4.	 WlYt to do when critia f~1 

Critics can fail to obtain their objective. The simplest case of this is when a critic is 

unable to make any improvements in the machine. This may occur when a machine has 

already been optimized and another critic is called. Unfortunately, the way out of this 

dilemma lies directly with human intervention. In particular, the user can be infonned of the 

inability of the system to make any improvement and the "susgestion" is made to change the 

resource constraint. After changing the constraint to a more reasonable value, the system is 

free to proceed. 
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"E-rthin, will now C~ yoUI w.y" 

Chapter 8 

Implementation, Results and Conclusion 

1.	 Introdudion 

First, this chapter will discuss the actual implementation and results of the ideas 

presented in the last 6 chapters. Next, areas for future research will be explored and finally, 

the conclusions willbe presenII!d. 

2.	 lmolementation 

SIll is orpnized along the lines shown in the figure on the next p;t8I!. Solid lines 

denote data flow; dotted boxes denote unimplemented sections. The labels on the arcs are 

the names of data formals. 

Before Slu can process the input propam, the various language dependent files must be 

read in. Sill is desiBJ1e(l to be lanBUlll! Independent - the syntax and semantics of the 

lanBUage are defined bv files that represent the parsing rules (productions), the data and con­

trol flow -equations-, the property propagation tableand the implementation library. 

Briefly, Sill runs as follows: the input PfOII'am is scanned and parsed bv a recursive 

descent paner. The output of the paner is an ordinary pane tree. The pane tree is used as 

an intermediate form for several stages of analysis. The first action after parsing is control 

and data flow analysis. The analysis algorithm is described in Appendix A. After this is com­

D.ullow 
eqwIlonI 

~ 

Llbr..., .aphs 

Librarydefns 

Grammar 

Graph 
Transformations ~ 

.. : Critic 
: Gallery 

Figure 8.1 Detailed block diagram of system orpnization 

pleted, both the dala flow and control flow graphs have been constructed. Next, the pane 

tree is traversed and declarations of types and other properties are attached to the terminal 

82 
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eMta flow nodes. Note thalthe rather baroque type declarations 01 both VASL and CLASP are 

meant as a substitute for more inllOlved property extraction. Next, property extraction is done 

and properties are propasated to the non-tenninal (interior) nodes 01 the eMta flow graph. 

Matching uses a table 01 conespondences from eMta flow nodes to possible implementa­

tions that use that node. Matching tries to match the eMta flow subgraphs 01 the implementa­

tions in the library stafting from each node in the data flow graph. The selection stage 

weighs the costs 01 making each selection and also checks the port and specification con­

straints. 

Note that critics may be called Jl any stage 01 the search, hence there is a dashed line 

to the "critics gallery", which is intended to be a collection 01 LISP code. Finally, the 

remaining implementations are Biven to the control store generator, which creates the control 

store and assigns the control fields. The final output is the net list generated from the imple­

mentations. 

The implementation was written in Franz-Lisp, a MacLisp dialect (in tum a descendant 

01 Lisp 1.5) that runs on the VAX-ll series computers. The program occupies 475 pages 01 

memory before compilation begins. The VASL program used as an example ran interpretively 

on a stand alone VAX llnSO in 60 minutes 01online time and 55 minutes 01 compute time. 

3.	 ReIUIts 

The example program generated two solutions (the fully serial and fully parallel solu­

tion) using a full library and a staaed beam search. 

A full annotated run 01 the sample program and a larger VASL program is shown in 

Appendix C. 

The ultimate goal 01 this work, as elucidated in the introduction, was to enable an 

unsophisticated user to generate a VLSI circuit that executed the user's program and also met 

the user's established design requirements. 

SIll meets these goals through its exploitation 01 various constraint based methods and 

heuristic search. However, a thesis often introduces more problems than it solves; this work 

is no different. 

4. Directions for future resurc:h 

4.1.	 Semantic. 

The semantics 01 most programming languases are ddined informally through the use 01 

procedures called "semantic routines". Only recently have more formal methods such as 

denotational semantics been used to describe the semantics 01 Ianguaaes. These "semantic 

routines" are called during syntax directed translation. SILl is different: the semantics 01 the 

library modules are partially described by a dataflow graph. The matching procedure essen­

tially states that a piece 01 the program and a subgraph are equivalent - both in terms 01 the 

graph and the semantics "expressed" by the dataflow subgraph. What this means is that the 

nodes generated by the eMtaflow analysis procedure have a particular syntax and that it is the 

matching that ddines the meaning (or semantics). Of coune, there's much more to the 

semantics 01 hardware or VLSI (or programs for that matter). A much more extensive effort is 

needed to define the semantics 01 hardware (broadly construed). 

4.2.	 eritia 

As in Sacerdoti, the use 01 ~ritics in SILl is a replacement for a more precise semantics 

01 optimization. 

·The coostrolCtive critics ......-eredewIoped in ... iod hoc fehion. No ~ ..... been made 
to justify !he translonmtions !hal they perform or to enable dlem to aeneralle all valid transfor­
mations." (Sacerdoti ISac751, lIP. 126) 

This is due to the lack 01 semantics 01 hardware optimization. This is another area ripe for 

exploration. 
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4.3.	 un of procedure c~li.. mechanisms 

The astute reader may have noticed that Ihere hasn't been a mention 01 procedures. 

This is not serious if the depth01procedure callin8 is not lleat - the immediate solution is an 

on<hip stack that can be part 01the control section. However, fOf recursive procedures, this 

becomes a much more serious fault. One solution is to move the stack off<hip - but this 

introduces the delays associated with off chip memory. Another solution is to try and com­

pile the recursive function into a network 01 machines. This notion will be expiOfed in the 

next section. 

4.4.	 Interaction of mKhinel MIl ~ 

f'rotp'ammers know that lalllJUilBeS heavily influence their prDlVammin8 style. likewise, 

laJ18UIIl!S exert heavy influence on the machines that can be senerated from prDlVatnS writ­

ten in them. In particular, lanlUlPS with assipvnent Introduce the notions 01 s/obal and 

shared state. This restricts the Implementation by reduci.. the amount 01 parallelism in the 

resultant machine. This is wide/y recotJI1ized and efforts are bein8 made to chan8e these 

notions. fOf example, Arvind (Arv79J has shown how to compile a Ianpase without side 

effects into an array 01machines. VAl (AcD79J is a lanauaae desiped b execution on data 

flow machines without Blobal state. There should be more wen done In how to compile 

such la"IUIPS into machines. 

In fact, Ihere should be more wen done Is how to COfnpile lan8UlBeS into machines 01 

any bm. One 01the few wens on this topic Is Wand IWan82J. He discusses the autOfnatic 

creation 01 machines from a denoUtional description 01 the lal18ualP!. The system uses com­

binators which becOfne the -inslNctionsw 01the machine. 

4.5.	 Memory hieruchy 

4.5.1. Rezitters 

AlthouBh not explicitly stated, this wen has assumed a simple model 01memory hierar­

chies. FOf example, there are no local retlisters, as commonly found on most machines. 

local retlisters are used to hold intermediate results 01computations such as common subex­

pressions. They are used to save time by not stori.. results in the more costly external 

memory. It would be possible to introduce retlisters as a side effect 01 functional unit shar­

in8. Such actions are not done in SlU. 

The waph coiOfin8 has been useful in retlister allocation b deterrninll18 when le!'ist ­

-spi lli l18- should be done (CAC81). A derivation 01 such an alpithm miJlht be useful fOf 

p1annin8 the location 01retlisters on a chip. 

4.6.	 ExterNI memory 

f'rotp'ams rarely use a small amount 01memory. Any VlSI system that is deslped by a 

silicon compiler must plan on usi.. an off chip memory b SOfne (possibly all) applications. 

As it stands now, S1u is not C08/lizant 01any notion 01off chip memory. This is because the 

time-space tradeoffs 01801118 on and off chip can be done usI.. the existil18 methodoIotw 01 

search and evaluation. In particular, the use 01an external memory offers the space cost 01 

just the drivers and 1000ic, not the memory array. likewise, the time penalty is the cost 01 

8Oin8 off chip plus the memory access time. Both 01 these parameters can be easily 

expressed 8iven the existil18 descriptive mechanism. As an example 01 this, Appendix C has 

a linked list set implementation that uses external memory. 

However, Ihere's more to the problem. What happens when two Of more operatOf 

implementations use an external memory array' This is similar to the prob/erns faced by mul­

tiprocesSOf access to memory. There are basically two solutions: 
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(1)	 Divide the memory into two, either by separating the memories or by using mapping. 

(2)	 "Synchronize" the algorithms used by the implementations so that they cooperate (for 

example, by sharing memory allocator5), 

4.7.	 TiminI .......-n 

Unfortunately, SW lacks a aood timing mei15Urement subsy5lem. This was 5trictly due 

to the amount of effort spent in describing and analyzing the timing of the seneraled circuits. 

As it standsnow, SW adds up the "dNy" times that are specified as part of each implementa­

tion specification. This should be replaced with a timing analysis subsystem that uses such 

measurements as the delay from stalement to statement or the delay of a loop. System5 like 

thole described by Cohen and ZUCkerman [Col) or Ramshaw [Ram791 could be extended to 

CCM!l' such timing calculations. A complex timing analysis subsy5lem should be part of any 

future silicon compiler. 

4.8.	 Makhinl cOflllJUUtion rates 

Little mention has been made of the problemof differing computation rates, particularly 

with pipelined implementations. When two implementations are connected and they have 

different periods (not delays), then lOme attempt must be made to match the difference. T~ 

ally, queues and caches are introduced to toIve these differences. A truly complete system 

would automatically introduce such intedaces. 

4.9.	 Typesandtype ....aton 

An underlying current of this work has been the use of types in Very High Level 

Ianguaae desi8l1. Specifically, recall that the ~ta flow graph matcher uses mode typing as 

part of the matching procedure. This enforces the notion that the implementation of data is 

divided by type. 

However, there are many shortcominp and the solution is noc immediately obvious. In 

particular, consider the problem of type senerators (AlGOL 68 calls them "type con5truCt0r5") 

for the seneric data type "set". An example of the usqe of such a con5tnJctor would be a 

"set of integen" or a "set 01 floats". Slu attempca to match an implementation 01a data type 

with a module that implements that data type. Thlt is Icnown as a "one step refinement." 

Unfortunately, this makes the de5ipers task harder - the designer must create a new module 

for every new typel A better scheme would be the use of type senerators (con5truCt0r5) ­

unfortunately this is very hard. The difficulty lies in the creation of a circuit that can be 

extended across differing base types (for example, useful for both inteser'5 and floats). 

4.10.	 Makin, the desi... debupbIe ... tembIe 

Programs seldom work the first time; unfortunately, digital circuits aren't much different. 

Therefore, some provision should be made for the insertion of hardware that makes the lest· 

ing and debuUing of a desi8l1 easier. While possibly noc a standard option, these additions 

should be available if the user requests them. 

Sproull and Frank [FrS811 have an CM!l'Yiew of lOme techniques that could be used by a 

silicon compiler as _II as a circuit designer. Also, Williams and Parker [WiPBJI have a 

review of desi8l1techniques that increase the Ie5tability of VLSI desi8l1. 

5. Conclusion 

This work is one step toward the ultimate goal of a system that compiles a program to a 

description 01 an intesraled circuit. This goal has been achieved by using techniques from 

Artificial Intelliaence and conventional compiler theory and practice. The work reported in 

this thesis has shown that: 

•	 Compiler techniques can be used to senerale machines for VlSI implementation from 

programs 
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•	 Very High Level Languages can be used to hide the implementation complexity of VLSI 

design 

•	 Constraint methods are useful and applicable to the VLSI problem domain 

•	 Heuristic search and constraints can be successfully used to choose implementations 

with differing costs 

•	 Resource constraints can be used to control the optimization 01 the design by calling 

specialized code 

"y"", mind i. #i/I«I with new idNs. M.Jr.• ..... 01rhftn" 

Appendix A 

Flow Analysis Technique 

1.	 Introcluction to flow .aIysis 

The use 01 flow analysis in compilers Is quilie convnon. Flow analysis can be divided 

into two parts: control flow and data flow analysis. Control flow analysis is conc:emed with 

how the lJIOlVam (or more precisely the propam COUnll!r) chanIes from ·stalIemerit to state­

ment. Data flow analysis Is concerned with how data flows from variable to variable. 

In the past decade, there has been a considerable body 01 literature published that 

exposes the more theoretical nature 01 data flow analysis (includi"l its intimalie connection 

with lattice theory (Kil7l)). An Introduction to the use 01 flow analysis In compilers can be 

found in Aho and Ullman (AhU77J, Kennedy (Kena1) has a fine overview 01 the exlsti"l 

techniques. 

To review briefly, dataflow analysis can be divided Into two call!pies: high leveland 

low level. High level analysis begins with a pane tree or some other-high level- representa­

tion. Low level analysis uses -lower- level representations such as connection matrices. 

The output 01 either form 01 analysis is a low level structure such as a matrix 01 

USEIDEF bits. 
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There are, however, limitations on the present collection of flow analysis techniques. 

First, they are strongly languase dependent. There his been limited work done on making 

these techniques table driven. Donzeau-Goute's ID0n8I) work on senerating data flow from 

denoulional semantics is a fil'lt iIeP. Second, !he output of flow analysis is senerally used 

for optimization, not for !he ,eneration of !he data path section of a machine. 

The Row analysis technique described here was created to solve these two problems. 

The analysis procedure accepts a description of !he control and data Row "equations" for 

each lefthand side of a production in !he lanauqe lVammar. Uch "equation" uses !he parse 

tree of !he input prQII'am as a source of data and control. The final output of !he procedure 

are !he control and data Row graphs for !he input prQII'am. 

2. A delcription of thetechnique 

2.1. Introduction 

The analysis technique Is a CONUUCtive one, that is, !he graphs are constJucted incre­

mentally as the analysis proceeds. The IV" is synthesized by a IV" interpreter that inter­

prets a special lanauqe desiped for Row analysis. This JansuaIe will be described furlher 

in section 2.4. 

2.2.	 Control ftow ....... ftow: diffennceI ..... .-.uantieI 

At first glance, there appears to be Iltde difflnnc:e between a control Row IV" and a 

data Row paph. They both are dlrectlld graphs, pouibly with cycles and they both have 

nodes with muhiple edees leadina in andout. HoweYef, there are a number of subde differ­

ences that will arise when !he actual interpreter is implemented. These differences will be 

apparent as !he primitives • !he various are discuued In section 2.4. 

2.3.	 The IMsic idN 

The basic idea behind !he Row analysis IeChnique is to use a IV" lVammar to con­

struct!he flow lVaphs. This is similar in spirit to kennedy, Farrow and Zucconi IFk(76) who 

used a IV" lVammar to analyze a restricted set of flow graphs. The primitives of !he IV" 

langu. are !he rerminals of !he languaae. The stack of !he interpreter acts in much !he 

same fashion as !he stack of a parser. The interpreter is directlld to interpret new btanches of 

!he parse tree by primitives in !he Ianguaae. 

2.4.	 Primitives 

There are IS primitives; some of them are restricted to control Row and some are res­

tricted to data flow. The indeoendenl primitives are: 

• Attach-head <expressionI > <ellpre55ion2> 
Forses a connection between two nodes. This is !he fundamental primitive for 
formins Iinb. This returns !he first expression (nadel). 

• Attach-tail <ellpre55ionI> <ellpre55ion2> 
This is similar to attae~, but returns !he result of evaluatina !he second expres­
sion (expression2). 

• Follow	 <expression> 
is !he mechanism that introduces the Row of control; (oI1ow needs a field of !he 
parse tree to pursue, i.e., ((oI1ow car) says to recursively call !he inlerpretler with 
!he car of !he parse tree. 

• Loop	 <expression> 
begins a loop. Each loop his a body wflich is !he (oIlowing ellpre55ion. 

•	 Loopback . 
is a way to create an arc back to !he IINrest loop. Nearest means that loops are 
kept in stack order. Note that this eliminales namina. but at a cost: iUbitrary exits 
and loops from loops are not permitllld. 

The next sectiondiscusses !he primitives specifIC to data Row analysis. 

• Do <expression> ... <expression> 
is similar to !he AlGOL-60 BEGIN ... END pairs; IeChnically it is not needed • it is 
mainly a syntactic device. 

•	 Nodel <label> <node name> <symbol table> 
is used to search symbol tables; if !he nade is not in !he table, then !he nade is 
created and inserted In !he table. The first field is !he label to be given to !he 
node. The second field name name to be searched for or created. The third and 
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last field is the name of the symbol table. This permits multiple symbol tables. 

• Nodel ..::ldbel>	 <node name> <symbol table> 
is identical to Nodel except that nodes are created without being looked up. This 
creates multiple nodes for a given name. This would be used for the creation of in­
terior nodes in the data flow graph. 

The following are the primitives that are specific to control flow analysis. They are: 

• Enter <expression> • 
returns the name 01 the entering node 01 the expression, i.e., the node without a 
predecessor. This Is possible because each control flow node has a link both for­
ward and backward. Enter chases the backward links until the field is NIL. 

• Exit <expression> 

• Exits <expression> 
are two versions 01the same primitive. Exits returns the list 01multiple exits given 
a single node. An exit is defined as a node without successors. Exit is similar but 
retums only one node. Ifmore than one exit is possible a bug trap is called. 

• Fork <name> <success> <failure> 
creates a node with the name <name> and two exits; a ·success· exit and a 
·failure" exit. 

• Join <name> <expression> ... <expression> 
joins toaether a collection 01 nodes into a .- JOIN node (with the name 
<name». 

• Node: <name> 

• Follow: <expression> 
These are the links between control flow and data flow analysis. Node: creates a 
node with the name <name> and then transfers control to the data flow analysis 
routines. When the data flow analysis is completed, control returns to the expres­
sion that called the Node:. Follow: is identical to Node: except that a new control 
node is not created. Note that these commands are needed to ·synchronize· the 
control flow and data flow analysis routines. In particular, the data flow nodes 
must have the control flow nodes that were ·active· when the nodes were generat­
ed. This is used by the microcode generator described in Chapter S. 

2.5.	 Power of the method 

The data flow analysis and control flow analysis methods described here are powerful 

enough to handle the demands of , restricted set of ·realistic· languages. The control flow 

analysis routine is limited by the loop and loopback nodes. Although not implemented, a 

loop.o..-rd primitive would be possible and would extend the generative power of the 

technique to cover loops with arbitrary exits. 

Although somewhat limited, this method is powerful enough to cover the ·structured 

flow graphs· (a subset 01 the ·semi-structured flow graphs· of Farrow, et al. IFKZ7611 of 

BOhm and Jacobini I80J66I. Of course, the addition 01 the loopback primitive extends the 

range of graphs generated. A loopforward primitive would extend the class further. 

3. Example 

Consider the example of a while statement. The control flow specification for this 

statement (in YASLI is as follows: 

(whilestate.ent 
( 

(loop 
(attach 

(follow eadr-) 
(fork TI3T 

(enter (loopbacll: (edt (follow cddadr)))) 

(node GUT) 
)
 

)
 

Here, the cadr branch of the parse tree is the boolean expression, while the cddadr branch of 

the same tree is the top node of the statement. Noee how the enter and exit primitives 

are used to get both the top and bottom nodes, respectively. Also, note how the loop and 

loopback pri.itives are used to set tbe loopi... of tbe while etat-.t. 

4.	 Conclusion 

The method described heremet all the pis set before IS described in the first section. 

It is language independent, simple and reasonable efficient. However, there are some 

interesting new directions: 

(1)	 Is it possible to automatically generate the ·equations· given the definition of the 

semantics of the language (such IS denotational semanticsll The answer is probably 

yes, but the work remains to be done. 
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(2)	 Exactly how efficient is this methodl In terms 01 space, this method clearly uses a fair 

amount 01 space (mostly on the stack). In terms 01 time, the method is relatively sim­

ple. An exact measurement or calculation would be interesting. 

.I.H~ rout boll MId ".wI 011 firm If04JI'If' 

Appendix B 

Library format 

1.	 Introduction 

The libraries for both YASL and CLASP are specified by giving a definition 01 each 

module in the library. The module definitions have two pam. The first part contains the 

specifications that are seneric to the module (such as pCll't declarations and resources con­

sumed). The second part contains the various pararneten 01 the control section dependent 

"pam". Both01 these sections are discussed next. 

2.	 Generic definitions 

The generic section 01 a module definition contains eight subsections. It begins with 

the declaration 01 the parameters 01 the module. These are the parameters that are bound 

during the binding process. For e~, the width 01 a bit vector set representation can be 

declared as follows: 

(variable bitWidthl 

The next two declarations declare pCll'tS to be either input and/or output pCll'tS. (Note that irs 

quite possible that a pCll't is bidirectional and hence can be labeled as both input and output). 

The name 01 the pCll't must be followed by the width 01 the pCll't. So, 

(inputs (inputPortNlme bi tWidth) ) 
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(outputs (outputPortName bitWidth)) 

Next, if a port is to be connected to the control store, then it must be declared as a control 

port. The declaration looks as follows: 

(control (controlPor~ bitWidth)) 

After declarina the pom, the properties of the ports must be declared. These are the 

properties that are needed for port constraint propaption. The followin8 declaration declares 

"inputPortNarne" to have "parallel infeler 2s<omplement" properties: 

(propertiea (inputPor~ parallel inteller 2a-~Ie.ent)) 

Lastly, the seneric declarations must state the resources consumed by the implementa­

tion. Currendy, the resources are limited to _, time and power. What follows is a sample 

declaration for a module with a width of bitWidth (declared by the parameter section 

described above), a heiBht of 20 lambda and an overhead of bitWidth • 5 lambda. (All area 

and tensth metria are BIven In Iambdl which is the minimum feature size (MeC781l. The 

time is liven in nanoseconds. Noee that thete are two time parameters: delay and period. 

Thepower fiSUre is liven in mil/iwalls. 

(ar. (width bitWidth) 
(heipt 20) 
(overhead (ti_a bitWidth 5))) 

(ti_ (delay (lookup delay)) 
(period) ) 

(P<N8r (ti_a bitWidth 100)) 

3. Function tpedfk: declarations 

Each module may have several functions. These functions are specifed by declarina 

five parts. The first part declares the "name" of the function. The second part declares the 

control sianal bindinp that cause the function to be performed. For example, if the control 

port "operation" is bound to a two, then thedeclaration would be: 

(control (operation 2)) 

The third part is critical to the operation of the system. This is the declaration of the 

data flow .aph to be matched with thedata flow .aph of the input Pf08I'am. The form of 

the...aph to be matched is identical to thedescription of thedata flow .aphs (see the appen­

dill on data now ...aph seneration for more details) except for a few details. In particular, it 

is necessary to identify theports of the...aph. Theother cha,. requires that when nodes are 

matched, types are matched also (if a type field exists). For example, consider a port that is 

also a node. This node can have a type to match as well. The followina example dem0n­

strates both these features. 

(port inputPort (node IDDfTIFIDl SEI' Ufl'II]Dl)) 

This is a sinste node ...aph with the type "set of Intf!Ier" attached to the node, which is in 

tum named "inputPort". 

The next declaration declares the timina parameters for the function. This is because 

each function may have differina timina parameters. Noee that thIs can ~ a prob/em 

when the timinl parameters of a module's functions differ. The final part of a definition is 

the bindina fields. Bindins is described fully In Chapter .4. Briefly, the form of a bindina 

declaration is as follows: The first field is the name of the variable to be bound. The second 

field is the name of the port to lookupthe property whole field will be bound to the variable. 

The third field is the name of the property and lastly, the fourth field is the optional interpre­

tation function. For example, thedeclaration: 

(aet8ize inputPort aize) 

will bind the variable "setSize" to the size field of the node that is matched to the port called 

"InputPort". All example of a bindina function with an inlefpretation function is liven below: 

(bitWidth inputPort raDIle raDIle-aize-in-bita) 



101 100 

Here, range-size-in-bits is a function that returns the lOS (base 2) of the ceiling of the range of 

bits. 

4. libruy Iynw 

The BKkus-Naur form (BNf) fOf the library follows below: 

library ::=
 
name components
 

components ::=
 
name ( NAME fields) components
 
nil
 

name ::=
 
IDENTlfER
 

fields ::'"'
 
( VARIABLE parameterlist)
 
( OUTPUTS portlist )
 
( INPUTS portList )
 
( PROPERTIES propertyList )
 
( AREA areaList )
 
( TIME tlmeList I
 
( POWER expression )
 
( PARTS partsList )
 

parameterlist :: ­

IDENTIfiER id-list
 
nil
 

id-Iist ::-

IDENTifiER id-Iisr
 

id-Iisr ::'"'
 
• id-list
 
nil
 

portlist ::""
 
( port-name width ) portlist
 
nil
 

port-name ::=
 
IDENTIfiER
 

width ::"" 
NUMIJER
 
IDENTIfiER
 

propertylist :: ­
( signal-name properties )
 

signal-name ::=
 
IDENTIfiER
 

properties :: ­
property-name properties
 
nil
 

property-name :: ­

IDENTIfiER
 

areallst :: ­

( WIDTH expression) areaList
 
( HEIGHT expression) areaList
 
( OVERHEAD expression) areaList
 
nil
 

timeList :::
 
( DELAY expression) timeList
 
( TIME expression) timeList
 
( PERIOD expression) timeList
 
nil
 

partsList ::=
 
( part-name partList) partsList
 
nil
 

part-name ::'"'
 
IDENTIfiER
 

partList:::
 
( CONTROL signalList ) partList
 
( GRAPH graphDescription ) partList
 
( TIMING timeList) partList
 
( BINDbindList ) partList
 
nil
 

bindList ::: 
( parameter-id port-id property-spec 

property-interpretation-function ) bindList 
nil 

parameter-id ::= 
IDENTIfiER 

port-id ::'"' 
IDENTIfiER 

property-interpretation-function :: ­
IDENTIfiER 

property-spec ::= 
property-name 
( fiRST property-name ) 
( SECONDproperty-name ) 
( THIRD property-name ) 

property-name ::'"' 
IDENTIfiER 

expression :: ­
$-expression 
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Appendix C 

Yet Another Set Language 

1.	 Introduction 

YASL is another set lanpaae. It Is descended from VERS2 IEar741 and SEll ISch5)). It 

differsfrom SElL siB"iflCantly In that It does not have all the trappinss 01a full set theory (in 

particular, the notions 01 mappinss and functions). It also lacks the relational power 01 

VERS2. However, the lanauqe has a full complement 01 set operators, includllll existential 

and unlYeBlI quantifiers. Unlike SElL, YASL Is a statically typed lansuaae (I.e., types are 

decided at compile time). 

YASL prosrams resembleprosrams written in "conventional" alpithmlc languases such 

as ALGOl.-60: Thedata type declarations 0I1he variables come first and the body 01the pro­

I"am follows. 

The next section informally discusses the syntax and semantics 01 YASL. Following the 

description 01 YASL, the library Is Included. This Is the actual library used by the demonstra­

tion pI'OII'am. Lastly, this appendix concludes with the transcript 01 the example pI'OII'am 

(shown in figure 1.11. being compiled by the sY*"'. 

2.	 Detcription 

2.1.	 Introduction 

The syntax 01 YASL is described In the next two sections using Backus-Naur Form 

(BNF). The reader unfamiliarwith this should consult IAhU771 for an explanation. All lenni­

nals are In upper case; non-lennlnals are in lower case. Each separate line Is a production. 

The symbol "nil" indicates an empty (epsilon) production. These productions match the next 

token under all conditions. 

2.2.	 1.e.b1lnput 

The input to the parser comes from the sanner. The scanner has some simple rules for 

scanning tokens. These are detailed below: 

(1 ) Identifiers are scanned by detI!ctll1ll an Initialalphabetic (a-z, A-I). This is followed by 

an arbitrary strilll 01alphanumerics (a-z,A-Z,0.9). 

(2)	 The number scanner assumes that all numbers are Inlellers. While this doesn't imple­

ment the full YASL lansuaae, it was suffICient for the demonstration prosram. 

(3)	 The operators and delimillers 01YASL are composed 01special characters. 

(4)	 YASL uses the MESA IMMS791 comment 1Iy1e: anythllll beyond a double hyphen (-) Is 

Isnored until the end 01the line. 

2.3.	 Declarations ... toope ruIeI 

All the variables in the lJI'OlP'am must be declared. If a variable is not declared, !hen 

the selection phase will be unable to find any Implementations that ·cCMr" the variable since 

the selection phase depends uses type Information to separate the Implementations. (For 

further informationon the use 01 type Information, see Chapter 4). 

102 



104 105 

Unlike AlGOl-60 ~nd its deriv~tives, YASt does nor have scopinB rules. This strictly 

due to the amount at effort expended in constructinB the symbol tmIes. There is nodlins 

inherent in the IKk at scopins (excepllaziness). 

2.4. Dedu.tionI 

YASL declar~s serve two purposes: first, they specify the type at the v~riables. The 

second purpose is to Bive hints liD the sysll!m about various parameters, such u the size at 

sets ~nd the ranp at inteaers. 

declaration :: ­

aetDeclaraUon
 
tupleDeclaration
 
int.,eroeclaraUon
 
floatDeclaration
 
characterDeclaration
 

inte,erDeclaraUon :: ­
II'fl'DlDl opUonalRan8e : idLiat
 

floatDeclaraUon :: ­
n.aAT opUonalRan8e : idLiat
 

characteroeclaration II ­

atARAC1'Dl : idLiat
 

opUonalBize :: ­
WI'DI BIZE J«MIIB
 
nil
 

opUonalRan8e :: ­
WI'DI IWIlI: Bl:IlllEl'l""'......,..- t«.-a AM) ...-.
 

ail
 

Besides basic type dec~. declarationl can abo be used to Bive hints to the selec­

tion SyslII!mabout the size at the varloui eIemeftb. 

Here ~ someexamples at declarations usi.. the basic types: 

inte,er with ranse between 0 and 100 I x,
 
float : z, -- No hinta iD thia one I
 

2.4.1. Set mel tuple types 

The declar~tion at sets ~nd luples use the basic types u subtypes. The synlilX at set 

~nd tuple decl~r~tions ~re u follows: 

setDeclaration :: ­
SET optionalSize or declaration
 

tupleDeclaration :: ­
nJPLE opUonslSize or declaraUon
 

optionslSize :: ­
WI'DI BIZE ...-.
 
nil
 

optionalRan8e :: ­
WI'DI IWIlI: BI:IVIDI Nl.MIIJl AND foUIBIB
 
nil
 

Examples atlhese decl~r.ions are: 

set with size 100 of inte,er with ranse between 0 and 100 : x,
 
set of float : y, -- No hinta in this one either!
 
aet with aize 10 of inteaer : z, -- the ranse ia urmno.n
 

2.5. ExpreuionI 

Expressions in YASL resemble expressions in other ·~I...ithmic· IanBuages, includinB 

the set l~nBLJ'1ge5 mentioned in the introduction. They ~ composed at ~tors (such u 

the well known ~thematial oper~) ~nd operands. A1thoush oper~tors have precedence 

rel~tions, parenlhesises an be used liD order the ev~luation at comptMtions. 

2.5.1. Operandi 

Since oper~tors oper~te on operartds, it ~ sense liD discuss the oper~ at YASL 

first. The operands ~ the II!nniMI symbols at the YASt ararnmar. There ~ two types at 

oper~nds; sc~l~r oper~nds and set operartds. The sular operands ~ numbers and identif­

iers. Set oper~nds ~re constructed by explicit set constant oper~tors such u the set fonner or 

tuple former. The foIlowins ~re examples at bodl types at operands: 

y (variable)
 
5 (.....r)
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{ 1,2,3 } (set fOlW!rl
 
I 2 •• 5 J (tuple fOlW!rl
 

2.5.2. Oper~ton 

Operators of VASL have a built-in precedence which is determined by the ordering of 

the operator symbol in the VASL grammar. Operators can be divided into four classes 

according to their semantics. Theseare: 

2.5.2.1. I.oIiaI operators 

The logical operators of VASL are the familiar logical operators: AM) , (B and NOT. 

Theyare (respectivoelYI, logical disjunction, logical conjunction and logical neption. 

2.5.2.2. RNtionaI operalon 

The relational operators of VASLyield boolean results, and hence can be used with log­

Ical operators. The various symbol. and their relations are as follows: 

symbol relation 

MIN minimum
 
MAX maximum
 
< leu than
 
<- leu than or equal to
 

equal to
 
>­ lleater than or equal to
 
> sreatl!r than
 
<> not equal
-. not equal
 
SUBSET Is a subset of .
 
IN contained in .
 

2.5.2.3. Arithmetic operators 

Apln, the arithmetic operators of VASL are Identical to the operators in most alp 

rithmic langwlll!S. 

They are: 

IyIIIboI opntIIOr 

+ Addition, Set union 
Subtraction. Set inteneetion 

- Multiplication 
Division 

These operators are used on numeric types such as n.oAT and IJIrI'IDIJl. The set types 

have different meanings for these operators. Theseare detailed in the next section. 

2.5.2.4. set oper.......
 

As mentioned in the section above, the arithmetic operaIDrS take on a different meaninl 

for set types. Theseare: 

+ ,UNION Set union 
Set difference 

-,INTERSECT Set IntII!rseCtion 
I Symmetric set diffel'ence 
WITH Set addition 
LESS Set subcraetion 

Here are examples of all of the operators In action: 

a c b 
NOTcINd 
• - I 1.2.8 I 
(a >- 10) AM) (a c 20) 
1 IN { 1 •• 5 } 
{ z 8UaI THAT z IN • } 

2.6. S...eme.... 

With the ellception of the asslsnment and label statl!ml!nts, statements in VASL are used 

to alter the control flow. The syntax for stall!melltS is as follows: 

realStat-.t :: ­
c~tat-.t 

forstat-.t 
whileStat-.t 
forsllStat-.t 
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e:d8t8Stat~t
 

itStat~t
 

888i,...,ntStat~t
 

labelstat~t
 

2.6.1.	 Compound .......1J 

Compound salementS ale a throwback to AlGOl-60; the BlXJIN denotes the the 

besinnina of a sequence of saliemenlS. The 1M) denotes that the sequence h.ls ended. 

Unlike AlGOL-60, BlXJIN 1M) pairs do no« introduce a new Iexiul scopina environment. 

This was discus5ed in the section 3 of this chapler. 

2.6.2.	 Allipmenl lUI""'" 

AssipmenlS are simple. The synt.ax is: 

8881sn-entstat-.nt :: - II8I1"IFIIB ; - ezpre8810n 

2.6.3.	 a..beII 

Labels were introduced into the synt.ax of YASl to name points in the prosrillll. These 

names were to be used in specifyina timina requirements. A typiul use would be to specify 

the time between two labels to be less than tome performance requirement. The syntax is as 

follows: 

labelStat-.nt :: - ( II8I1"IrIIB ) 8ta~t 

2.6.4.	 for iUtemenlJ 

The YASl FOR statement is sisniflCMllly different from the usual .,. satement. First, 

the satement does not assume that one variable is soina to be set. Second, multiple assian­

ments are permitted in the body (normally a sin&le limit and increment is propmed). The 

limit for the loop is a filllliliar boolean expression. The initial multiple assianments are done 

belate enterina the body of the loop (the initialiDtion 1Iiep). Next, the boolean expression is 

eval~ted. Next, the body of the loop is performed, followed by the next set of multiple 

assisnmems. FoUowina these assianmerns, conIroI returns to the lOp of the loop. The syntax 

is: 

torstat~t ::.
 
.,. -..1tipleA88i,...,nt8 'I1tDI -..1tipleA88isr-nt8
 

tolCondi tion boo1ean1:lq1reuion DO .tat-.nt
 
-..ltipleA88isn-ent8 :: ­

a88isn-entStat.-ent -..1tip1eA881.-tTall
 
-..ltlpleA88i,...,ntTail :: ­

• -..ltlpl eA88 isn-ent8
 
nil
 

torcondi tion :: ­

WHIU
 
lIft'lL
 

Examples 01this are found below: 

.,. 1 :- O. j :- 1 'I1tDI 1 :- 1 + 1 lIft'lL 1 > 10 DO .••
 

.,. It :- 0 'I1tDI It :- It + 2. k2 :- It WHILI: It c 100 DO •••
 

2.6.5. While iUlementI 

The while satement is identical to the AlGOL-60 while stU!ment; the boolean expres­

sion is evaluated before enterina the body of the loop; the body is eval~ted and control 

returns to the boolean expn!S5ion. The loop is exiled when the boolean expression 10ft 

false.	 Thesyntax is: 

whilestate.ent :: ­
WHILE booleanJ:qlre881on DO 8ta~t
 

2.6.6. If utemenlJ 

The	 IF sr.tement is identical to IIlO5l other IF staIements (BCPl IRiW80J excepb!d). 

like the AlGOL-60 IF statement, this IF sr.tement suffers from the "danalina else" syntactic 

problem. This is resolved in favor of the nearest else. The exact syntax is: 

ltstat.-ent :: ­
IF booleanl:llpre88ion 'I1tDI 8tat-.nt itStat~t.
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ifstat-.tt· ::.
 
I:LSI: atat_t
 
nil
 

2.6.7. Quantiflen 

The set quantiflen resemble the WHILI: loops in construction. The boolean condition 

in the WHILI: statement corresponds with the lieSt 01set inclusion. The syntax 01 the quantif-

Iers is: 

forallState.ent ::.
 
nBALL IDINI'lrlIK IN aetl:Kpreaaion DO atat-.tt
 

exiataStat.-ent ::.
 
EXIS'l'B IllDITlrllK IN aetl:Kpreaaion DO atat-..t
 

2.7. Milcellaneous 

Each propanl must bealn wIttt a fRO(IWI identifier. This is mainly to provide some 

identification 01 the propam 0UlSIde 01 comments. Alter declan.. the propam name, the 

PftIII'anl Is consuucted usi.. statements. StaRments come in two varieties: declarations and 

WrealW stafIl!ment:I, l.e., statI!ments with actions. These were discussed in the previous sec­

tlons. 

proer- ::.
 
PROaRAII IllDITlrllK ata~ta IN)
 

atat.-enta ::.
 
atat.-nt ata~ta.
 

atat-..ta· ::.
 
; atat-.tta
 
nil
 

atat.-ent ::.
 
declaration
 
realStat-.tt
 

3. SynIH (BNF) 

This is the complete lVanlmar for YASL: 

..............
.......-....
 
PROGRAM IUNTIFIER _ EN£; . 

_..•-_._.... 
;­_nil ..• 
declarlllan 
_I~ 

dect.Mion ..• 
setOec...... 
lupleDec...... 
inIIIerf)ec......
 
Ro.lOec .....
 
characl!rOeclarlllan
 

reoIStaIemenI ..• 
~ 
forSUIemenc 
whlle~
 

forall~
 

exlstss-­
~ 

~
 
~
 

oetDeclarlllan ::. 
SET opllonalSlze Of decIarIIIan 

tupleOec....... ::. 
TUPU oplicJNlSla Of dKlarIIIan 

inIIIerf)eclarlllan ::. 
INTEGER ~: IdUIl 

floIlDeclarlllan ::. 
FlOo\T~ : IdUIl 

eta.racI!rOec...... ::. 
CHARACTER: IdUIl 
~ ..• 

Wl1H SIZE. NUMIlER
 
nil
 

optioNJllanIIt ::. 
WITHItANG( IlE1WEEN NUMlIER AND NUMIlER 
nil .._.__._~ ---..• 
BEGIN_END......-~_ .. ::. 
IDENTIFIER :. eIqIleIIlon 
~ ..• 

(IDENTIFIER I _ 
as-...... ::. 

fOR~THENIl'lIIIIp""'''''bCandlllon~OO'''''' 
~ ..• 
~ 1IIll1tipleAll9•••llTeII 

IIIll~Tall::· 

.1IIll~ 
nil 

forCondiIIon ..• 
WHILE 
UNTIl 

....i~::· 

WHIlE~OO_ 

foran~::· 
FOlW.l forall~ariable 

forall~ariable::. 
IDENTIFIER IN tel£~ foraIl~uaIllier foraIlSI*melllllody 

forall~uaIifler ::. 
SUCHTHAT~ 

nil 

http:atat-.tta
http:atat-.tt


l'i~lt·~,·vr¢:'Ji~i·[lll.tllll~I~~.~tlt'iflltttl·ilf·1811.~I~I·it81[

"~'i ~ "" £I'I!t I hit' I',H' 1',,1 ~l''- I
 

. ( 

--N 

-

1.0>­
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"~ 
~1Il" Pages 11S to 1S4 were omitted from the technical report edition due to cost considerations. 

~1Il":: • 
• ~iIl 

Copies of these pages can be obtained either from the Xerox University Microfilm edition or ........nil.-..__
....-.---_ ... 
.. 

~~1Il" directly from the author. 
~". 

NUMIIER 
idlJII ... 

IDENTIfIER ldl.iIr 
ldI.iIl" ::• 

• idlJII 
nil 
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·Yow inIuirion ;s uce41ent bill ~ viewpoinl could be Ire/pIvf' 

Appendix D 

Digital signal processing Languages 

1.	 Introduction 

Oigigl signal proce55ing is an interesti"l domain lor both hardware and lansuaae 

design. This is due, in ~rt, to the different properties 01 digigl signal processing algorithms. 

In particular, digigl sipl processi"l alsorithms have some 01 the following features: 

•	 performance criteria 

Thereare many typIt 01 performance criteria lor digigl signal processing. For example, 

filters have bands, Q, noise Iimi15 andocher specifications. Transforms also have Iimi15 

on performance, particularfy speed and time limi15. These are useful criteria for 

automatic selection. 

• appIicalive natule 

An ·applicative nature- is a loose term thai means (in this context) a lack 01 side effects 

and the ability to cascade (pipeline) functions. Also, this means that the algorithms are 

not tied to sgte lransitions. 

• ~allel functions 

Digigl signal processins alsorithms often have functions that can be perfo.med in p;aral­

lei. This is ~ularty lrue since (as Slated above) many alpithms lack side effects. 

• varyill8 arithmetic forma15 

Oigigl signal processing often involves the use 01 different arithmetic representations 

due to differing demands for precision, noise and ocher performance p;arameters. 

There are several different levels to look at digital signal proce55ing. One level is at the 

level 01 individual samples (from an analos to digiQl converter). This can be called the si,­

m" level. Examples 01 signal level processilll are the computation 01 filters, lransforms and 

similar direct data manipulation. Another hiBher level is concerned with algorithms; how to 

fit the functions at the signal level toeether to perform a task. This can be called the .,.... 

level. 

The history 01 lansuases lor digigl signal processilll dares back to earlier days 01 com­

putill8. BLDOI IKar6SI, for elWllple, was an early block di.....am compiler. Unfortunately, 

such languaps lack the power to handle such alsorithms as the Fast Fourier Transform. 

Recently, there has been work on appIyins data abstraction and typi"l mechanisms to 

digigl signal processilll. GethOeffer IGet80I gives a sketch 01 a lanaua,e (SIPROl) thai has 

some dag abstraction capability in it. (A PASCAL-like lansuase with a few added types). 

Kopec's thesis IKopBOI is a much ITlOle complete description 01 how CLU ILAMall can be 

extended through judicious use 01 data abstraction to cover both the signal and sy5ll!m 

aspects 01 digigl signal processilll. 

However, both Kopec and Geth6efter deal with types 01 a high level but not at a wry 

high level. It. very high level speciflCalion does not deal with the sampled dag but rather at 

the level 01 connecting functions without knowing the underlyilll implementation. 

2. A delcription of ClASP 

CLASp· was designed to handle the module to module level 01 description 01 digigl sig­

nal processing functions. Here, the modules perform fairfy high level functions such as 

I Complex ~ lor AIIdlnI SIplII "-lnI-

ISS 
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filtering and transforms, not low level functions such as resisters (delay). 

Much 01 the syntactic slructun! for the language was borrowed from the set language 

(YASU used in most 01 the thesis. In particular, many 01 the control structures an! similar (if 

not identical). Naturally, there an! changes to the data types and some 01 the looping strue­

tures. 

1.1.	 Features unique to ClASP 

Although siBNI processing alpithms an! varied, there an! two basic slructures: filters 

and transforms. The next two sections consider how to expressfiltering and translorm opera-

lions. 

1.1.1. filters 

Consider the specification 01a filter. A filter has several performance criteria. AmonB 

these criteria are bandwidth, quality (Q), sideband noise, roundoff etTOl" and noise. So that 

CLASP Is an effective dilital siBNI processing specifiation Ianauaae, it should be able to 

express these parametl!fS IS part 01the proaram. Anocher approach miaht be to attach asser­

tions. CLASP takes the view that such assertionsshould be visible and an! part 01the specifi­

cation; IS much as any 0Iher property In the set domain 01 VASL. Filters can either be 

declared (in effect becoming a function) or used directly wittlln an expression. Naturally, a 

declared filter has constant upper and lower bounds. So, Iowpass filler from DC to A (440 

hertz) could be decla.m as 

declare filter f~ DC to 440 : Afilter; 

• :-	Afilter(input); 

or it could just be used In an expression: 

a :-	 filter input f~ DC to 440 : arilterTwo 

Of course, specifications can be added to the filter just as set declarations can be added 

in VASt. Considerthe 1oI1owin8 5aI1lpIe declaration: 

filter input fr~ fO-1OOO to fO.1OOO
 
with passband ripple ~ db and
 
with stopband attenuation ee db down;
 

Thecomplete syntax for a filter is as follows: 

filterDeclaration :: ­
FILTIR ... COlUltant TO conatant filterSpecs : IDan'IFIDl 

filteredEKpression :: ­
FILTIR expression ... ezpreasion TO expression filterDld 

filterDid :: ­
filterSpecs filte~ 

f ilterSpecs ::. 
WIm	 filterSpec 
nil 

filterSpec· :: ­
AM)	 fil terSpecs 
nil 

fil terSpec :: ­
Q or	 cOlUltant filterSpec-
PASSBAND RIPPU: c:I conatant DB filterSpec· 
STOPBAND A'I"l'D«JATIaf c:I conatant DB ....ureSill' filterSpec· 

__uresill' :: ­
DOWN 
nil 

filte~ :: ­
: IDan'IFIDl 
nil 

Note that the filter specifICatIons are optional but should be specified by the user if the 

proper filler is to be selected. 

1.1.1. Transforms 

Now, consider the use 01a translorm (Fourier, ~ace, Hilbert, etc.). One such exam­

ple occurs in digital mixing where convolution 01 two siBNls is a common operation. This 

can expressed in a siBNI processing Ianguaae by translorming the two input sequences 

(tuples) into the frequency domain and performing the convolution. This is written in CLASP 

as: 
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tranafora input-seq fr~ ti.. d~in into frequency d~in; 

tranafora envelope-seq fr~ U .. d~in into frequency d~in; 

tranafora convolve( input-aeq, envelope-aeq) into tiae ct-in; 

Hole lhat the FOUI'ier transform needs complex numbers, therefore complex numbers 

mU5t be included in the primitive types 01 CLASP. Hole ~150 that the Discrete Fourier 

Tr~5fonn (Dm ~y have irnplernerUtions in silicon that tiIke Ies5 time iU1d ~IU than the 

Fast Fourier tr~5form (Fm (FoK79J. Of course, the choice 01 implemen~tion is done 

~utomaticallyby the selection phue 01 the compiling sysllem. 

In retrospeCt, ~ beaer _an would IYve been to introduce sepuate types for uch 

transform domain. Then, the transform would become ~ coercion oper~ between types. 

Unfortunately, the demonstr~ system's simple system 01 type decJM~ wouldn't be 

able to IYndlethese types. This is, however, suicdy ~ implementition i55Ue. 

The synwc 01 ~ transform expressions is: 

tranafo~esaion ::. 
'1'RANBFOIlII aetl:lEpreaaion .... tranafo~in IX*AIN 

TO tranafo~in IX*AlN 
tranafo~in I:. 

TIllE
 
JRDPK:Y
 

2.1.3. Special iter~tive '01IIII 
The I:VDlY ~t is designed to expeu the fundMnen~1 reI~tionship between wn­

piing rate iU1d the length 01 the microprogram. In particular, the I:VDlY st*ment is used in 

the outer loop 01 the program 50 that the sampling r~te an be specified. The sampling r~te 

is the reciproul 01 the time specified by the -timeMeuurement- part 01 the ~tement. 

Unfortunately, the implernerution 01 the I:VDlY ~t is not complete. This is bec~use 

the presenI SIU sysllemdoesn't perform ~ detailed timing ~Mlysis, therefon!, it is inupable 01 

a1culatlng the Iet'IIh 01 the wait ~ leqUired at end01 the loop. Hole that w~it nodes (in 

the control flow graph) are needed when the microprosram is 100 short. Microcode 

cornpKtion is needed when the micfOP'08l'am is too Ionsl 

everyStatellellt ::.
 
EVlRY U~surellellt DO ata~t
 

ti~urellellt ::.
 
expression ti.eunits
 

ti8eUnits :: ­

IIIU.ISIDlNDS
 
lIS
 
IlIaulSIDlNDS
 
US
 

2.1.4.	 FundionI 

Most 01 the functions used in ~ digiYl signal proce55ing setting are expressed in CLASP 

u functions. This function ailing style Is corwened by the compiler into the proper SUging 

01 fu~1 units. This conversion will be di5c~ in the next section. 

3.	 Gener~1ion of mKhines fromCLASP IpKlfiutionl 

3.1.	 Introduction 

The next question is: given ~ CLASP JlftI8/'am, howdoes the compiler convert it to ~ 

I1liIChinel The ~wer lies in the control iU1d ~ flow aMlysis routines. Since the flow 

_lysis routines are table driven, the flow aNIysis for CLASP an (iU1d does) differ from that 

01 YASl. But the ~in question ~ins: how to translate the usignment5 iU1d function ulls 

into the appropriate connection 01 modules. 

3.1.1.	 Functions 

For eumple, the CLASP code 

~;- b 

is tr~sl~ted into the following connection 01 modules 

D-EJ
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in exactly the same way that it was implemented for YASl. The CLASP code frasment 

((g(x)) 

is translated into these modules 

8----8---GJ
 
ush,. a very similar technique. 

3.2.	 From tpeelficationl to types 

As the section on filters noeed, there is a syntactic method for specifyll18 the properties 

01 the filter. This can be uted ID Insert the appropri_ values into the type declarations, 

much as YASl did. For example, the filter specification In section 2.1.1 can be represented 

In the type block for the filter as ((pu.""-ripple 5) (.topbud-attenuation 

eel ). 

3.]. MetrIa 

The metrics for the digital signal processIns are difterent from the metrics 01 set 

lanauaaes. In partkular, emphasis is placed on the ability to use pipellned components. 

Therefcn, a sood metric to use is ATP, whee P is the period 01 the device. Cappello and 

Steiglitz (CaSali uted this metric In thetr work on analyzf.. p1pe1ined serial digital signal 

proc.essins circuits. The SIlJ Implementation IlleS !he 1liiie metric as YASl, If only because 01 

the convenience (and !he lack01 a sood periodicitycalculation). 

3.4.~of~-" 

Another task that SIlJ doesn't perform is the calculation 01 filter coefficients. This isn't 

to say that this subtaskIsn't within SlU's realm 01 expertise - rather that It was omitted for rea­

lOftS 01 time and necessity. However, this brings up an Interestil18 point. Consider the case 

01!he example propam - here a filter Is defined In tl!nnS 01 a center frequency with a con­

stant width. Now, the matcher selects a variable filter (as it should) - but should Slu generate 

a machine that calculates the coeffkients 01 this filter at -Nntime- (I.e., durins filter opera­

tion) or during compile timel The answer should be obvious - certain filter coefficient cam­

putations are quite extensive, thereforemost. if not all coefficientcalculations should be done 

at compile time. But howl In the case 01 the example propam, the center fn!quencies are 

stored in a tuple and accessed sequentially from that tuple. The compiler system should be 

capable 01 realizins that these frequencies (in the tuple) are constants, and furthennore, that 

the tuple can be chanpd from a tuple 01 frequencies to a tuple 01 coeffICients. this Is an 

extremely Important -optimization- and should be part 01 any compiler for a very high level 

signal processi.. la...... 

3.5.	 An:hitec:ture .... MkIOCOde .....atimI 

3.5.1.	 An:hitec:ture 

Because 01 !he Ioopi.. structures, !he default archltectures (I.e., befcn critia) have 

multiplexed hardware. For example, !he Implementation 01 !he digital Touch-Tone decoder 

(see !he last section) has two loops for !he four filter binds. Therelore, only one filter chain Is 

created and is shared over !he four binds. If !he user needs all four filters Implernetded for 

speed reasons, this can be specified by an ~ time demand. The -out 01 time- critic 

must be prepared ID -unroll- !he loop In much !he same fashion as a conventional compiler 

(see (MUm, pp. 471....72). 

3.5.1.1.	 Word Ienath effects 

While word length In !he machine is dependent on !he prosram (and !he ewntual appli­

cation), there are other side effects. In partkular, word length can effectoverflow and round­

off, which In tum can effect!he noise figures (MuR761. 
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3.5.1.2.	 ,.,allel v... Serial udlitec:tures 

Like YASL, CLASP doesn't make a committment 10 any 10 any form 01 parallel or serial 

architecture. Inrerest in serial architeetun!s for signal processing has been increasing since 

Lyon's paper (Ly08l1 (Ly080). He drilWS his inspiration from an earlier paper (now lS yeilrs 

old) 01 Jackson, tc.iser and McDonald UICM68). Lyon extended their work by introducing 

interface standards between modules andallO using hierarchy in desiBllS. Lyon's serial -phi­

losophy- as seized by a lIfOUP at Edinbu'ih (Den) and used in iI simple silicon compiler 

(FIRSTI (Ber81). FIRST uses a fairty fixed placement scheme and a 5ma1l number 01 prede­

fined operators. The FIRST Ianguaee ibelf is a rather simple and low IewI register transfer 

languaae. This contrasl5 sharply with CLASP, which ignores placement and routing issues 

anduses types 01very high 1ewI. However, note thata tool like FIRST could be used 10 p!flo 

erate the lower level cells for CLASP. 

3.5.2.	 Mkrocode .....ation 

Because the machine eeneration phase is intimately tied 10 the nocion 01 -data flow ~ 

data path, control Row ~ control sIOfe-, the machine plfleration 01CLASP proIfams does noc 

differ from that 01 the YASL set domain. So, control constructs are translated inlO the conlrol 

Row graph and the graph Is used 10 plfler_ the microcode sIOfe. The use 01 microcode for 

signal processing machines Is noc new 01course. Allen (A1175) has a review 01 lOme micro­

coded digital signal processing machi... circa 1975. However, there is one -feature- that 

should be noted: For real time machille$, the sampling rate is proportional 10the length01the 

microstore; speciflQlly. the 

sampling rate - 1IIlenglh 01the microslDn! • speed 01the slowest step) 

Of course, should the machine have a 5ma1l micro5lOre, then wait states must be used. If the 

microslDn! is 100 W1Ie (more often the CiI5e), then saeps must be taken 10compact it. This is 

either the job 01 microstore compaction (discussed In arealer detail in chapter 7) or the 

critics, which can possibly reduce the speed 01the slowest step. 

4. An eumpIe 

Using the rouch tone decoder example, the following block diqram will be p!flerated 

by Sill: 

IcMdoundCf uppdoundCf 

bondLlmIl 

Input 

ouIpuI 

Figure D.l Touch tone decoder data flow graph 
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s. Conclusion 

The CLASP lansuage is sil"ificantly different from past digital signal processing 

lansuages. It permits lISen who are naIVe in the desil" of digital signal processing circuits to 

specify a desil" that can be automatically constructed. Like the set language YASL, CLASP 

depends on an extensive library built usil18 other tools. CLASP also allows the users to treat 

dilital signal processinl functions as -black boxes- and ignore the undertyinl implementa­

tions. Of course this is the aim of Very High Level Lansuages such as YASLand CLASPI 

6. Synfa (INF) 

This is the complete 8J3l1WNr for CLASP: 

~::. 

MODULE IDENTlfIEIl __END.--..•---.--_;-­....nil ..• 
......JIion 
~ 

cIeclanIIon ..-

DEClAItE typeDeclarllllon
 

IypeOeclarlllon :: ­

aJfIlI*KDecIanIIon 
ftUflWIcTYl*
 
IeIOoclarJlion
 
IupIeOocIarllllon
 
fIIIerOedaraIIo
 
lr-'ormDeclarllllon 

compleIIOocIarllllon :: ­

COMPlEX Of -.tcTYl*
 

numericTypes :: ­

IIoIIOecIarllllon
 
~ 
~ ..­
~
 
forStalement 
whl"'~
 
for~11St.IemenI
 

.~
 

ewrvse­
~
 

~
 

ldendfter5Iart 
~ 

telDeclarllllon:: ­
S£ToplionII5Ize Of typeDeclarIIIon
 

tupleOeclarlllon ::-

TUPlE optional5lJe Of typeDeclandon
 

1neeaerDe<:larIdon ::-
INnGEIl optionalllMlle : idl.. 

f1oIl0ed.aIIon :: ­
flOAT opIIonalllMlle : idI... 

lI_rOed.aIiGn ::-
Filnil FIlOM COIlIlanl TO COIlIlanl fiIIerSpea : IDENTlFU 

..........00C1aralion ::-
TllANSFORM fllOM lranIfonnDomaIn DOMAINTO ~ DOMAIN : IDENTlFIEIl 

transIonnDomMl .. ­
T1ME 
fltfQUENCY 

opIIonaISize :: ­
WITH SIZE NUMllfIl 
nil 

opIIonaIllMlIe :: ­
WITH IlANGE BflWEEN NUMllfIl AND NUMIIElt 
nil...-.-.ICI_ .._.........-~ ..
 
WITH SIZE NUMllfIl 
nil 

optionaIllMlIe :: ­
WITH IlANGE BflWEEN NUMlIEIl AND NUMIIElt 
nil_.__ ...~~--_ .. ­
IlEGIN __END 

IdenIJfIeoSIart .. ­
IDENTlflEllldenllflerTail 

ldenlIfIerT'" :: ­
~ ....all ,............. ~,... :: ­
:-...-.on 
~ ..­
(~ 

1abeI~::-

( IDENllflER J_ 
~::-

FOR~ THEN ...iIlIple....,... bCandIIIon bocIIilInElqnMl DO ......... 
iilII~::-

~~ail 
~T..I:: ­....~- .. 

nil 
foICondltion :: ­

WHIU
 
UNlll
 

WHILE boaleInExpieBIo DO_ 
1oraI~::-

FOREACH IoraII~arIMJle 

for~"~arIMJle ::-
IDENTIfIER IN Ii!IExpieMIan~ ""'-',_idImtw 

1oraI1~1fIer:: ­
SUCHTHAT~ 
nil 

for~IISIaIa,..idIodv ::­
DO_ 

_1IISSCaeement ::. 
FORAl.l"'~arIMJle 

~arllIbIe::-
IDENllflElllN 1i!IExpieMIan~"ellllS4lE,..1lIIody 
.~.. ::­
SUCHTHAT~ 
nil 



...
 
g; 
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IIUpIeformer 
-.e- ..• Pages 170 to 235 were omitted from the technical report edition due to cost considerations. _..... ..
~ 

PHI 
ill ... Copies of these pages can be obtained either from the Xerox University Microfilm edition or 

IDENTIFIER optianalCaIl 
~I::. 

directly from the author.
 
nil
 
( pnx:edureUIl 

pnx:edureUIl ::. 
expmoIon I 

Il!tfonnef ..• 
IDENTIFIER IN sel£lqnIIIan SUCHTHAT ~ 
~.. 
~ ..• 
~ 1etCorWMII... 

~1Ib::• 
.. ~ 
~..•... ~.

..or nil ..•---
~ 

..... 
~~ 

IUpIeformer ..• 

IDENTIFIER IN.......... SUCHTHAT~ 
~.. 

tupleConI&and.l ..• 
~~ 

tupleCanIlanIlI ..• 
.. ~ .........--___ .
~... 
. .. 
~ 
~ 
~::. .........I__ .
--- . 
~~ 
~ ..• 
~~ 

nil ..•~
.. ~ 

--..u.r 
~... ::. .~ 

nil ..•~

NUMBER 
1nII~ 

Idl.. ::. 
IDENTIfIER Idl... 

1dl.iII""• 
• Idl.Itt
 
nil
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"Rely aft 'jOlIIMIIif ~ wMl Ill" IIIinp done" 

Appendix E 

Programming Vignettes 

1.	 IntnJduc:tion 

This PIOlIl'am was by far the la,..est LispPIOlIl'am the author had eYef written. In creat­

ing such a PIOlIl'am, the author fousht and won (and lost! several battles. Some 01 these are 

recorded below as well as reflections on Lispas a IDol for building experimental systems. 

1.	 Global nameIpKe probIemI 

As any Lisp user knows, there Is one space for Lisp names: the obIist. Therefore, the 

author was YefY eateful eo prefIX each function (and atom) name with the name 01 the file 

that the function was written to. F_ variables -e kept to a minimum and the use 01 

lambda variables was maximized. Dynamic KOPing was used occasionally, but it makes the 

PIOlIl'am harderto read from just the code. Theounce 01prevention (unique names) worked; 

not one bug was due to conftictlngnames. Recent Lispsystems have "pacl!aaes" that pennit 

the user eo keep these in separ_ addre5S spaces. 01 course, there was only one PIOlIl'atn­

mer, so it was much euier eoawMd conflicts. 

3.	 fishtinI with the LiIp Implementation 

The particular dialect 01 Lisp that was used for the system (called "Franz Lisp") was 

cleMly not desiped with larae system building in mind.' 

Pushdown list 0IIeffI0w can result in a sIobal reset - leaving the user (author) bewil­

dered (and anllY) as all the stack stale was IOMI There-e no facilities for doing the kind 

01 interroption that SCOPE IMas80I can do. As a result, It was often necessary to prettyprint 

one function after another, all the way down the calling hief'archy. 

Theauthor will claim here that solid facilities such as tncifl&, breaking and SCOPE-like 

interroption facilities are a necessity In any languap when building a larae system. Yet, 

YefY few systems have these facilities, especially the so called "alpithmic" languaaes. 

4.	 leftec:tionI on "III LiIp 

The author's choice 01 Lisp as a system building Ianguqe was motivared by SeYefaI 

concerns. First, Lisp removes worries about faulty memory allocation and pointer chasing. 

This turned out to be a true plus. Second, the author wanted the ability to radically chanae 

Stu if a horrendous diffICulty was uncovered. This happened at Iea5t once and the system 

was "tom apart" and reconstructed in the period01about a day and a half. This was also a 

plus. Although speed was not an ultimate concern, the speed 01 the il1ll!rpCeter was often 

unbNrable during debuging. This was definitelya minus. 

ProlJramming in Lisp is definitely different. Sandewall ISan78) has an inll!n!Sting article 

about Lisp and Lisp PIOlIl'anvning syslll!mS. One 01 the more inten!5ting facets 01 pIOIl'am­

ming in Lispis building the system from bottom up and from top down simultaneously. 

At the advice 01James Allen, the author avoided using so called "hairy datastructures" 

by using GENSYM symbols instead 01 creating pointers with CONS. While this introduced 

additional complexity (the need to eval the GENSYM names to pt the values), it did reduce 

the complexity 01pointer management. 

_. I In all ...... Franz w..... IIIport a ... !aile MKIIIp ~.... Maarma. _ IIIbuild MW ~ 
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S. A 1M! of two systems 

There were two experimental sysll!ms construetl!d over the course of a year and a half 

Of more. The second system turned out to be an almost total rewrite of the first system. FoI­

Iowins the advice of the thesis commitlee, the author's first system had no facilities for pro­

pam analysis. Information about the pnJIP'ams was seneraled by hand by the aulttOf and 

Biven to the JIIOlII'am. This provedto be tedious anderror prone. There was also some ques­

tion about what exactly was requiA!d by the COfnpiler. All of these problems were remedied 

In the second implementation. 

The first system also used a different constraint propaption alpilttm. In particular, 

constraints were propapted across the data flow papil until either a constraint conflict 

occurred (like a serial path met a parallel path) Of the constraint was already present in a 

node (i.e., propaptins the property -serial- into a node already marked -serial-.). This is 

clearly WI'OfllJ because the constraints of one selection should not condemn the rest of the 

selections to be constrained unless they are all connectIed. This uhimalll!ly pi back to the 

notion that constraints represent compatibility between pons. The second system only pro­

paptei constraints aclOSS one arc (to the COl'luected node) In the data flow paph. 

The orpnlzation SILl has chanted radically since the first implementation of Slu. In 

particular, the strlteBY for aaachins Implementations In the library to nodes In the data flow 

Ifaph has become the most complex part of the propam. 

Initially (in the first Implementation), this was done by a straisht forward table lookup. 

However, this also depended on the operators belns part of the definition of the identlflel5. 

This is clearly an unrealistic model. Eventually, a primitive matcher was written. This 

matcher suffered from the foIlowlns problem: When a match was made between the library 

description and the data flow sraph, a slnsJe record was created (called an Instance). Unfor­

tunately, this doesn't account for modules with differins control sianals that produce different 

functions. The next version of the matcher crealed match records that in tum were tied to a 

sinlle instance of the library module. This prOYed not only to be a reasonable wale8Y but 

also had intuitive appeal. 

In the second implementation, data flow and control flow analysis routines started out 

beinl entirely separate. This arraneement worted fine until it became time to senerate the 

microcode. AJ that time it becameobvious !hat each data flow node needed a list of control 

flow nodes that -used- the data flow node. Fortunallely, the fill wu easy. The control flow 

Ifarnmar was chanaed to have a construct !hat transferred control to the data flow analysis 

routines. The current control flow node was then inserted In any data flow nodes subse­

quently senerated. 

In order to senerate estimates for the control store (and the jump multiplelcer), It was 

convenient to senerate a flow node. This is desirable because it permits all the standard 

mechanisms of bindi.. metrics and critics to be applied to the new selection. The IIl!fleI'a­

tion of these new nodes turns out to be relatively !ltraisht forward. FIrst. a special data flow 

node is crealed with a property list !hat can be bound by the bindl,. procedure usi,. the 

library's representation for the Implementation. Next. a rnaII:h node II created (without caJ· 

Iins the matcher) estabIishins a pseudcHnatch between the Implementation and the newdata 

flow node. The next to last seep is the crellion of an Instance !hat ties the match to the 

library Implementation. The final seep II to call the binder, which proceeds smoothly from 

this point on. 

6.	 The implement.ltion of critia 

Halfway throush the implementation of the second Sysll!m, it became appaA!f'lt that 

contelltS would be requiA!d to implement the critics. The reason is as follows: since the cri­

tics chanse the data flow 1IfiPh, there must be a mechanism to chanse the data flow srapil 

without effectins the other nodes (stales) in the search tree. A conteld system like that used 
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in Conniver IMcS721 would have been just ript here. 

7.	 Debugins the library 

Unfortunately, debuuilll the library specifICation turned out to be an extremely enor 

prone and time consumilll operation. Misspellinll5 and improper &rapt! descripCions would 

oflIen nee appear until late in the session. Since the prosram can take hours to run (intel'pre­

tively), this was lilerally a waste 01 time. The solution would be to write a specification 

checker. Such a checker should Ioolc for undeclared names (and functions). Such a system 

would save eMYs 01 debullilll time. 

8.	 Specifiation 01dediraliont 

Perhaps the most lanauqe dependent part 01 SILl was the specifICation for the declara­

tions. Declarations were done by walkinl the pane Iree left to risht and callinl a function 

for specifIC nodes. Naturally, all the semantics 01 the declarations resided in the functions. 

And since the functions were written in LISP, it was easy to do anythinl desired. Note also 

that the left to risht traversal made declarations 01 the form "declare type: identifier-list" more 

advantapous that the "declare identifier-list : type", since it was easier to write a function 

that stuck types on one id at a time. 

9.	 tWry cia.. Itruc:tuI8 

As an instructive measure, the next pqe IlJusuates the connection between the eMta 

flow nodes, match nodes, control flow nodes, instances 01 library modules and the library 

module definitions. 

Libraryentry Instance Match Data flow Control flow 
node node 

bymbol--. inpulS.oulpUlI. 
cOnlroI.~.... IINIChes 
_.lIme.~1 

I~, 

Note: 1...1 denotes fields in a node 

Filure E.1 Hairy data structures 
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