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Abstract—We present a component-based multi-level
mixed-signal design and simulation environment for microsystems
spanning the domains of electronics, mechanics, and optics.
The environment provides a solution to the problem of accurate
modeling and simulation of multi-domain devices at the system
level. This is achieved by partitioning the system into components
that are modeled by analytic expressions. These expressions are
reduced via linearization into regions of operation for each ele-
ment of the component and solved with modified nodal analysis in
the frequency domain, which guarantees convergence. Feedback
among components is managed by a discrete event simulator
sending composite signals between components. For electrical, and
mechanical components, interaction is via physical connectivity
while optical signals are modeled using complex scalar wavefronts,
providing the accuracy necessary to model micro-optical com-
ponents. Simulation speed vs. simulation accuracy can be tuned
by controlling the granularity of the regions of operation of the
devices, sample density of the optical wavefronts, or the time steps
of the discrete event simulator. The methodology is specifically
optimized for loosely coupled systems of complex components
such as are found in multi-domain microsystems.

Index Terms—Behavioral modeling, microelectromechanical
(MEM) simulation, mixed-signal multi-domain (MSMD) simu-
lation, modified nodal analysis (MNA), piecewise-linear (PWL)
simulation, system simulation of microsystems.

I. INTRODUCTION

T HE development of an integrated design environment for
mixed-signal multi-domain (MSMD) microsystems is mo-

tivated by a convergence of new integration techniques for op-
tical, mechanical, and electronic devices and by consumer de-
mand for system applications that require new functionality,
higher performance, and lower cost. Next generation systems

Manuscript received June 5, 2002; revised September 11, 2002. This work
was supported in part by Defense Advanced Research Projects Agency, under
Grant F49620-01-1-0536 and in part by National Science Foundation, under
Grant C-CR9988319. This paper was recommended by Guest Editor G. Gielen.

S. P. Levitan, J. A. Martínez, M. Kahrs, and M. Bails are with the Department
of Electrical Engineering, University of Pittsburgh, Pittsburgh, PA 15261
USA (e-mail: steve@ee.pitt.edu; jmarti@ee.pitt.edu; kahrs@ee.pitt.edu;
mikeb@ee.pitt.edu).

T. P. Kurzweg was with the Department of Electrical Engineering, University
of Pittsburgh, Pittsburgh, PA 15261 USA. He is now with Electrical and Com-
puter Engineering Department, Drexel University, Philadelphia, PA 19104 USA
(e-mail: kurzweg@ece.drexel.edu).

A. J. Davare was with the Department of Electrical Engineering, University of
Pittsburgh, Pittsburgh, PA 15261 USA. He is now with the Department of Elec-
trical Engineering and Computer Science, University of California, Berkeley,
CA 94720 USA (e-mail: davare@eecs.berkeley.edu).

D. M. Chiarulli is with the Department of Computer Science, University of
Pittsburgh, Pittsburgh, PA 15260 USA (e-mail: don@cs.pitt.edu).

Digital Object Identifier 10.1109/TCAD.2002.806604

will combine digital very large scale integration (VLSI) tech-
nologies with sensors, actuators, communication, and control
devices incorporating analog electronics, optics, and mechanics
into a single system design. Current examples of commercial
MSMD microsystems include automotive air-bag controls, dig-
ital projectors, and optical network switches.

Design tools that work in a single domain such as digital
CMOS have traditionally relied on abstraction to manage scale
and complexity. However, in this abstraction methodology there
is an underlying assumption of domain expertise on the part of
the designer. In MSMD systems, there are few designers with
expert-level knowledge across domains as varied as optics, me-
chanics, and electronics. Thus, MSMD design tools must both
abstract detail and provide a consistent cross-domain modeling
methodology that can be accessible to a designer with limited
knowledge of a specific domain.

The creation of simulation tools for MSMD systems is also
difficult because these systems span the physical domains of
electronics, photonics, and mechanics, as well as multiple orders
of magnitude in both time and length scales. The difficulties
are compounded by the fact that computational performance
and accuracy are directly related to the level of detail in the
underlying models.

Two commercial tools for mixed-signal design and develop-
ment are from Coventor [1], based on Saber, and MEMSCAP
[2], based on the HDL-A language. Both of these tools provide
simulation support for electrical and mechanical components
with extensions for optical, RF, and fluidic devices. Coventor’s
CoventorWare software suite also provides physics-based
FEM/BEM simulation of components for detailed analysis and
extraction for some macro-component models.

However, creating a complete design flow for MSMD
systems still presents numerous challenges. Simulators must
use consistent modeling methodologies across domains and
between abstraction levels and also must exhibit fast yet
accurate simulation at the behavioral and system levels. Fur-
thermore, design flows typically depend on extraction from the
physical level to the behavioral level via multiple runs of finite
element or boundary element solvers. There is also a scarcity
of synthesis methods, typically based on simple library model
composition. Finally, there is a critical lack of metrology and
validation of device, component, and system models.

In this paper, we address the first two of these concerns: a
consistent modeling methodology across domains and fast yet
accurate behavioral simulation models that span multiple do-
mains. We focus on the three domains of optics, electronics, and
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mechanics, with an understanding that this methodology could
be extended to other domains. The results presented here have
been implemented in an MSMD modeling and simulation envi-
ronment described below.

We begin with a background of this environment with em-
phasis on system-level and behavioral-component models. We
then present our piecewise linear (PWL) behavioral simulation
methodology followed by a description of our modified nodal
analysis-based (MNA) fast solver for electronic and mechanical
models. Next, we describe our techniques for fast optical signal
propagation. Finally, we present a system-level modeling ex-
ample of a digital display that incorporates optical, mechanical,
and electronic components and demonstrates the multi-domain
integration of behavioral component models.

II. BACKGROUND

We identify three levels of abstraction for an MSMD design
environment: the system level, which is concerned with the en-
semble performance of complete systems composed of black
box parameterized components; the behavioral or component
level, which captures the input/output transformations within
multi-domain components with an abstract description; and the
physical or device level, which models the same transformation
as a result of the physical processes that underlie the operation
of the device.

A. System-Level Simulation

The simulation of multi-domain systems involves signals
with different properties (e.g., voltage for electronics and
intensity for optics) and with varied dynamics. The use of an
object-oriented framework permits a large degree of abstraction
and flexibility for the simulation of such systems [3]. At the
highest level, the system is composed of component modules
that are individually characterized and joined together by the
mutual exchange of information. As shown in Fig. 1(a) each
module, , processes some vector of input messages, ,
updates its vector of internal state variables, , and gen-
erates sets of output messages. The nature of these messages
can be optical, electrical, or mechanical. Using a discrete event
simulator, each module’s execution is based on the availability
of new data values for its inputs [3]. The simulation scheduler
provides the system with a buffering capability, which allows
the system to keep track of all the messages arriving at one
module when multiple input streams of data are involved. This
allows modeling of dynamic systems where each component
can have variable rates of consumed or produced data during
simulation.

In general, the components come from a parameterized
model library. Some examples include CMOS analog am-
plifiers, vertical-cavity surface-emitting lasers (VCSEL),
micro-mechanical cantilevers, lenses, and microelectrome-
chanical (MEM) mirrors. The components are modeled at the
behavioral level where they are represented either by analytic
expressions or as a tightly coupled network of elements ()
such as shown in Fig. 1(b). In either case, at the system
level there is a loosely coupled network of tightly coupled
component models. This corresponds well with the general

(a)

(b)

Fig. 1. (a) System-level discrete event simulation. (b) Behavioral model of one
component.

structure of mixed-signal microsystems where multi-domain
components interact with few signals, while, at the same time,
the behavior of each component is based on its underlying
physical processes. These models are discussed next.

B. Physical Device Versus Behavioral Component Models

We make a distinction between device-level and component-
level modeling. Device-level models focus on explicitly mod-
eling the processes within the physical structure of a device
such as electromagnetic fields, fluxes, mechanical stresses, and
thermal gradients. These are typically described by partial dif-
ferential equations in both space and time. Conversely, in be-
havioral-level models these distributed effects are captured in
terms of parameters, and the models focus on the relationships
between these parameters and state variables (e.g., optical inten-
sity, phase, current, voltage, displacement, or temperature) as a
set of temporal linear or nonlinear differential equations.

Device-level simulation techniques offer the degree of accu-
racy required to model fast transients and fabrication geometry
dependencies, as well as steady-state solutions in the device
[4]. However, modeling these processes requires specialized
techniques and large computational resources. Further, these
simulations produce results that are generally not compatible
with the simulators required for other domains. For instance,
it is difficult to model the behavior of a laser in terms of
carrier population densities while modeling the emitted light
in terms of its electromagnetic fields.

In order to deal with the problem of physical device simulation
in a multi-domain environment it is possible to use a simulator
for each unique domain, coupled to the other domains through
a higher level coordinating process that manages their behavior
in terms of their common physical processes in energy and
time. However, this technique has all the drawbacks previously
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mentioned for the device-level simulation and the additional
computational requirement to coordinate both simulators and
make them converge to a common point of operation [5], [6].
For system-level simulation the computational costs of this
method are prohibitive.

On the other hand, behavioral component models can be de-
signed to capture the key behaviors of a device from physical
processes. While this technique sacrifices some fidelity, the be-
havioral models can still provide enough accuracy for system-
level simulation. Therefore, our approach is to incorporate the
transient solution, along with other second order effects, of the
device analysis within the behavioral component model. Dif-
ferent methodologies can be used to translate the device-level
expressions, which characterize the device operation (e.g., for
semiconductors, Poisson’s equations, the carrier current, and
the carrier continuity equation) into a set of temporal linear or
nonlinear differential equations that are used in the behavioral
model [4], [7].

The advantage of having this representation is that we can
simulate electronic, mechanical, and optical models in a single
mixed-domain simulation environment. It supports an abstract
representation of the system consisting of a set of modules
interchanging information (in terms of electronic, optical, or
mechanical signals) as discussed above. And, it provides for a
mechanism for varying the degree of accuracy of the simulation
without changing the environment or the models. However, this
approach brings the challenge of choosing which behavioral
modeling techniques will be best for accurate and fast char-
acterization of the varied components used in multi-domain
microsystems.

C. Behavioral Component Modeling

When choosing a behavioral modeling methodology for
MSMD systems, not only do we have to consider the sets of
interactions between components of different technologies,
we also have to consider the performance of the simulation
environment, which depends on the simulation method and the
type of signal characterization chosen. Much research has been
conducted to offer a suitable methodology for the simulation
of these systems. Here, we classify them into two different ap-
proaches:functional modelingandequivalent circuit methods.

Functional modeling is a flexible and general methodology
that allows hierarchical support and mixed signal simulation.
Hardware description languages with extensions to support
analog signals such as VHDL-AMS or Verilog-A can be used
to describe the system [8], [9]. In this approach, the degree
of abstraction provided by the hardware description language
simplifies the designer’s task for the description of the system
in terms of analytic expressions including differential equations
[10], [11].

Even though the functional modeling approach appears to be
a promising option for the modeling of MSMD systems, it is
necessary to clarify the difficulties and limitations present in this
technique. During the description of the system, an “expert” de-
signer must specify the relations that define the interaction be-
tween the different signals in the system. The definition of these

relationships is nontrivial for multi-domain components since
it involves the characterization of ports, defined as transducers
(energy conversion devices) and elements, defined as actuators
(unidirectional energy flow devices) [12]. Additionally, since
this technique takes advantage of the abstraction levels and lan-
guage constructs offered by the mixed-signal simulation frame-
work, it shares their drawbacks as well.

The second method for behavioral modeling is based on
finding an equivalent circuit representation for the nonelec-
trical domain to be simulated. The electrical equivalent can
be simulated using any of the well-known and established
circuit simulators (e.g., SPICE, iSMILE [4], or Saber). This
method has been used for the simulation of micro-mechanical
devices, where a mapping of these devices to a SPICE netlist
is proposed [13]–[15]. Yang [16] simulated optoelectronic
interconnection links using iSMILE as the circuit simulator
engine. The limitations of the equivalent circuit technique are
the lack of support for hierarchical design and co-simulation.
Additionally, because the simulation is coupled to an analog
simulator, digital simulation is not supported.

For both the functional- and circuit-based approaches, the
fundamental limitation for system-level simulation comes from
the algorithm used for the analog simulation. MSMD microsys-
tems, which consist of a very large number of elements at the
system level, will produce a large computational load for typical
mixed-signal simulators, based on conventional analog simula-
tors solving large sets of coupled differential equations.

As an alternative to traditional circuit simulation, nonlinear
network modeling techniques using PWL models have been de-
veloped [17], [18]. This technique has been applied with suc-
cess in simulators such as NECTAR 2 [19], PLANET [20], and
PLATO [21]. These simulators are much more stable when com-
pared to traditional circuit simulators and provide flexibility for
their use in hierarchical design.

Conventional PWL simulators use integration techniques
to solve the transient response of the system because they
use continuous analog behavior for input signals. This is an
accurate but computationally demanding approach because
it requires integration techniques to solve the set of linear
differential equations.

In our approach, we extend the PWL technique to also
represent the discrete event signals in the system. The input
signals are linearized and, consequently, the transfer function
for each of the circuit elements in the components can be
obtained explicitly. This decreases the computational require-
ments because it avoids the integration process required in
the conventional algorithms.

Additionally, a literal representation for the equivalent circuit
representation of linear and nonlinear elements is used as the
PWL formulation. This avoids the computational overhead of
using a superset, or ensemble, of PWL models for the represen-
tation in the linear numerical analysis solver, which is the case
for other PWL simulator implementations. In our case, the dif-
ferent configurations of the network are changed according to
the change of regions of operations over individual nonlinear el-
ements and not through the use of ideal switches that configure
the superset model. Boundary conditions in individual nonlinear
elements are used to determine the switching behavior between
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configurations. In the next section, we present our implementa-
tion of this method.

III. B EHAVIORAL MODELING METHODOLOGY

Once we have chosen to use a PWL modeling technique, there
are three basic approaches to the modeling of a component com-
posed of linear and nonlinear elements in an equivalent circuit
model. The first is to use an interconnection of available linear
and nonlinear circuit elements, such as ideal diodes or current
sources, which have been precharacterized as PWL devices in
a library. The second approach is needed if we do not have ap-
propriate nonlinear models in the library. Then, the behavioral
modeler must explicitly model each nonlinear element in the de-
vice as a PWL function. That is, they must specify the number
of linear regions of operation, their boundaries, and the func-
tions that map device parameters (such as length) to changes in
the behavior. This static model would be combined with linear
models for intrinsic or extrinsic parasitics to provide a large
signal model for the component. The third approach starts with
a set of analytical equations that characterize the nonlinear ele-
ment and then performs an automatic linearization of these re-
lations to generate a similar static model.

Each of these three methods meets the needs of various types
of design methodologies. The first is applicable where equiva-
lent large signal models are known, while the other two methods
provide a flexible methodology to model new devices. In the
following sections, we present the automatic approach based on
the relationships among the ports of each device. First, we re-
view the mathematical justification for PWL approximations in
multi-domain systems.

A. PWL Approximation

Whereas at the system level each component is a black box,
each component can be described as a network of linear and
nonlinear elements. For our modeling methodology, the compo-
nent is first decomposed into a nodal representation of elements,
as was shown in Fig. 1(b), where elements are interconnected
through nodes. Every port is a pair of nodes in the component.
This can be done for components in the electrical, mechanical,
or optical domains, and for components which themselves span
multiple domains.

Next, the behavior of each element is captured in terms of the
analytic relationships among variables which define the state of
its nodes. The two basic types of variables in nodal analysis are
acrossandthroughvariables. Across variables are measures of
the values of field potential in the physics of the device (e.g.,
electrical potential, temperature, fluid pressure). Through vari-
ables are measures of flux intensity at nodes (e.g., electrical cur-
rent, thermal flux, fluid velocity).

The nodal analysis principle can be traced back to the basic
conservation laws of energy and bond graph theory [22]. In an
enclosed volume with finite interfaces, an energy conservation
relationship can be established using the energy flow through
the interfaces and the internal energy density.

Consequently, for any element in the nodal representation,
a function can be found that relates the total flows (across
variables) through its interfaces (nodes) as equal to zero.

If we define the state of the element as being a vector
of all its across variables , through variables , and
their associated () derivatives for all its nodes at time, then
the nodal function is defined as

(1)

where ,
, the across variables are

and the through variables .
The linearization of this function can be obtained through a

Taylor expansion around a point where the function is differ-
entiable

(2)

Using only the first-order term

(3)

Equation (3) is a set of ordinary differential equations (ODE)
of order , in a vector form, that represents the PWL equiva-
lent of the device at time. Additionally, this expression is in
a nodal form that can be mapped directly to an MNA formula-
tion [23]. The relevance of this formulation is that it involves
multi-domain variables and nonlinear elements. The additional
complexity of order for the ODE can be resolved using an
appropriate variable change that reduces the expression to first
order, as shown in Section III-E.

B. Generation of Multidimensional Approximations

For the simulation, we need a way to provide a linear approx-
imation of for each of the nodes that make
up the ports of the element. In general, this will be a hyperplane
in the dimensionality of the domain of, plus one for the range
of . However, since we are using a linear approximation, rather
than a single plane we decompose this space into regions, with a
PWL approximation in , the dimensionality of . This gives us
the ability to approximate the function to the degree of accuracy
required for the range of operation of interest.

While there are many choices for the decomposition, the re-
sulting PWL approximation of the function should have the fol-
lowing characteristics: it must be linear in the dimensionality
of the function (e.g., planes in three-space for functions of two
variables); it should approximate the function within specified
absolute and relative tolerances; it should make the fewest parti-
tions possible; and, it must be mathematically continuous in the
underlying function value at the transition points between the
different regions of operation.

This last point reduces the probability that the device model,
in simulation, will oscillate between regions of operation due
to poor convergence. It also makes simple, curve-fitting (e.g.,
based on minimizing rms error) techniques less applicable.
Rather, we use a triangulation approach based on recursive
decomposition of the function space.

We define a dimensional space for the domains of the
independent variables ofand the range of . We recursively

decompose the dimensional projection, from the independent
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(a) (b)

Fig. 2. (a) Partitioned two-dimensional (2-D) projection of three-dimensional
(3-D) functionf(x; y). (b) One patch decomposed into two planar regions.

variables, of the space intodimensional hypercubes. The de-
composition need not be symmetric; we can refine one region of
the space more than others. Each hypercube defines the region
of operation for the element. The advantage of cubic decomposi-
tion is that the bounds for each region of operation can be tested
efficiently in the simulator. Recursion stops when we reach our
tolerance level in every region. An example of such a partition
of a 2-D projection is shown in Fig. 2(a).

The next step is to triangulate the hypercubes, since we want
a linear approximation of the function; however, the 2corner
points of the hypercube over-constrain a linear function in
dimensions. That is, four points over-constrain a plane in three
dimensions, giving a saddle rather than a plane. In three dimen-
sions, this is solved by breaking the four-point patches into two
planes, defined by two triangles, as shown in Fig. 2(b).

For functions of more than two variables, the recursive hyper-
cube decomposition remains straightforward, however, the tri-
angulation of the resulting hypercubes is not simple [24]. While,
the best decomposition of the 3-D cube is five tetrahedra and
four-dimensional hypercubes decompose into 16 hyper-tetra-
hedra, in higher dimensions the decomposition grows to be quite
large [25] and finding the optimal is a very difficult problem. In
this work, we use a straightforward vertex index permutation
approach.

In general, a -simplex is the convex hull of points
in -dimensional space. A-dimensional hypercube is trian-
gulated if it is partitioned into finitely many-simplices with
disjoint interiors. In particular, we need a triangulation where
the vertices of all the -simplices are also vertices of the orig-
inal cube and the intersection of any two-simplices is a face
of each of them. This is called “face-to-face vertex triangula-
tion.” Using a general vertex index permutation algorithm, we
can perform the triangulation for higher dimensional functions.
This gives us nonoverlapping hyperlinear partitions of the hy-
percube where every vertex is from the original hypercube and
the boundaries of the region are defined by the faces of the sim-
plex, defined by linear equations.

As an example, in Fig. 3 we show the linearization of the
simple n-channel MOS (nMOS) transistor equation [26]

.

(4)

(a)

(b)

Fig. 3. Linearization of NMOS transistor,I vs. V andV for (a) 25%
and (b) 1% relative accuracy.

For V and V. Fig. 3(a) shows the lineariza-
tion for 25% relative accuracy while Fig. 3(b) shows the same
device modeled to 1% relative accuracy. We note that at 25% ac-
curacy the figure shows a discontinuity caused by two patches
having been decomposed to different levels of granularity. This
problem can be addressed by edge coherence techniques [27].

Fig. 4 illustrates the case for three dimensions. After re-
cursive decomposition of the space into cubes, each cube
represents a domain for a function of three variables and each
tetrahedron defines a PWL approximation of the function. In
Fig. 4(a), we show the tetrahedral triangulation of a single 3-D
cube. In Fig. 4(b), we use this triangulation to graph a function
for collector current in a bipolar transistor,, as a function of

(V) (V), (V) (V), and
270 K 330 K, using the Ebers–Moll formula [26]

with

(5)

The sets of linear regions of operations, together with the def-
initions of the boundaries for each region, for each element is
captured in a “template” data structure as shown in Fig. 5. We
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(a)

(b)

Fig. 4. (a) Decomposition of cube into six tetrahedrons representing a PWL
function in three-space. (b) Equal-depth 3-D linearization of NPN BJT,I vs.
V andV for temperatures 270 K–330 K.

note that there can be multiple templates for each device, de-
pending on the choice of underlying analytic expressions, the
accuracy chosen during the linearization process and the phys-
ical parameter dependencies.

The modeling methodology described above provides us
with a technique for modeling new devices based on analytic
expressions for their input/output relationships. However, as
mentioned above, it is often convenient to model systems where
some components are purely electrical and have already been
captured as a SPICE netlist in terms of elements in a library.
Therefore, we have also provided this interface to the behavioral
modeler.

C. Library Interface

We have implemented a template library-based interface to
the simulator in order to provide a method for parsing compo-

Fig. 5. Template library creation.

Fig. 6. Library interface for PWL behavioral solver.

nent descriptions into the behavioral simulator. In general, the
library can contain elements from various domains including
mechanical and optical. Currently, the library enables the user to
import existing SPICE netlists for electrical components while
performing simulations with mechanical and optical compo-
nents. The flow for this is shown in Fig. 6. A SPICE netlist
is parsed to extract the interconnection structure of elements.
As elements are read in, the template library is searched for
structural descriptions of the elements and their physical pa-
rameter dependencies. For linear components this is all that is
needed to build the MNA matrix representation of the circuit.
For nonlinear components, we also need to extract the defini-
tions of the regions of operation to be used during simulation.
These definitions can come from a predefined library or from
the process described above. While the structural description
and physical parameters do not change during simulation, for
nonlinear elements the regions of operation do change. Man-
aging these changes is done by the solver interface as part of the
behavioral simulator.

D. Simulation

As mentioned above, MNA [23], [28] is used to create a ma-
trix representation for each component. As shown in Fig. 7(a)
for electrical components, [S] is the storage element matrix, [G]
is the conductance matrix, [x] is the vector of state variables, [B]
is a connectivity matrix, [u] is the excitation vector, and [I] is the
current vector [23], [28], [29].

The linear sub-block elements are directly placed into this
representation. The structures of the nonlinear elements are also
incorporated directly but in the form of placeholders for their
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(a)

(b)

Fig. 7. MNA description for (a) electrical and (b) mechanical components.

templates. The templates give us the ability to change these
models for the nonlinear devices depending on the changes in
conditions in the circuit, and thus the regions of operation.

Once the integrated MNA is formed, a linear analysis in the
frequency domain can be performed to obtain the solution of
the system. The MNA representation is initialized by the appli-
cation of values for the state variables of the component. The
regions of operation definitions for the nonlinear elements are
compared against these state variables, and the MNA represen-
tation is updated accordingly. This MNA representation is then
passed to the solver, which returns the new set of state variables.

During each time step in the simulation, the state variables in
the module will change and might cause the nonlinear elements
to change regions of operation. Therefore, we recompute the so-
lution caused by changes between piecewise models. In general,
depending on the number of regions of operation used in the
PWL model, there are a large number of time steps during which
the system representation is unchanged, justifying the compu-
tational savings of this technique.

Understanding that the degree of accuracy of PWL models
depends strongly on the step size chosen for the time base, an
adaptive control method is used [29]. For any nonlinear element,
a coarse discretization may cause the element to move out of
the valid range space for its model. If this occurs, the state vari-
ables are restored to the last successful time point, and the time
step is reduced. The current iteration is then rerun with the re-
duced time step. If this time–step reduction results in the ele-
ment moving to a valid region of operation, then the time step is
accepted; otherwise, the same process is performed recursively.
The algorithm also discards nonsignificant time samples, which
do not appreciatively affect the output. The inclusion of the sam-
ples during fast transitions or suppression of samples during

“steady-state” periods optimizes the number of events used in
the simulation.

Due to the continuous nature of the analytic expressions, an
element is likely to remain in its current region of operation
or move to an adjacent region. The data structure for storing
the regions and the search for the new region of operation uses
this information to improve performance. However, sometimes,
an element moves through its space “too fast.” If it skips over
neighbor regions and moves instead to (still valid) regions that
are further away, the result may lead to inaccurate results or extra
transitions for other elements in the device. In this case, a better
result may be obtained if the time step is preemptively reduced,
even though it is not critical at the current time. Both of these
heuristics are used to trade off between computation time and
accuracy.

For electrical components, the inputs and outputs of the com-
ponent are identified nodes of the network. The output nodes
have characteristic output impedances, providing impedance
matching between electrical components. This impedance,
together with a PWL voltage waveform is passed to other
components by the discrete event simulation engine at the
system level.

While we have used electronic components for the preceding
discussion, these same techniques apply to other domains. For
mechanical components, we can derive a similar template-based
structure for composition into an MNA formulation as explained
next. Then we present an overview of our optical signal repre-
sentation and propagation methods followed by a system simu-
lation example.

E. Mechanical Behavioral Modeling

The same general solver using PWL techniques can be used
for mechanical models as well as electrical components. The
model for a mechanical device can be summarized as a set of
differential equations that define its dynamics as a reaction
to external forces. This model can be converted to the same
form as in the electrical case to be given to the PWL solver
for evaluation.

With damping forces proportional to the velocity, the equa-
tion of motion for a mechanical structure with viscous damping
effects is [30] where, is the stiff-
ness matrix, is the displacement vector, is the damping
matrix, is the velocity vector, is the mass matrix, is the
acceleration vector, and is the vector of external forces af-
fecting the structure. Obviously, knowing that the velocity is
the first derivative and the acceleration is the second deriva-
tive of the displacement, the above equation can be recast to

.
Similar to the electrical modeling case, this equation repre-

sents a set of linear ODEs if the characteristic matrices, ,
and are static and independent of the dynamics in the body.
If the matrixes are not static and independent (e.g., the case
of aerodynamic load effects), they represent a set of nonlinear
ODEs.

Using a modification of Duncan’s reduction technique for vi-
bration analysis in damped structural systems [31], we reduce
the above general mechanical motion equation to a standard first
order form, similar to electrical model which gives a complete
characterization of a mechanical system, as shown in Fig. 7(b).



146 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2003

Each mechanical element (beam, plate, etc.) is characterized by
a template consisting of the set of matrices and , com-
posed of matrices , , and .

If the dimensional displacements are constrained to be small
and the shear deformations are ignored, the derivation of
and is simplified and independent of the state variables in
the system. Typically, this element is only a part of a bigger de-
vice made from individual components that are characterized
using similar expressions. The generalization of the previous
case to an assembly of elements or mechanical structures is
fairly straightforward [29], [30].

We use dynamic control of the sampling rate in the mechanical
domain based in the Nyquist criteria of the highest significant
modal frequency for the structure. The allowed sampling rate
is lower than half of the period of the highest modal frequency.
This allows us to optimize the samples used in this domain
while still completely characterizing its dynamic behavior.
There can be several orders of magnitude reduction in the
sampling rate compared to the electrical domain because of
the difference in dynamics.

The use of a PWL general solver for mechanical simulation
decreases the computational task and allows for a tradeoff be-
tween accuracy and speed. The additional advantage of using
the same technique to characterize electrical and mechanical
models allows us to easily merge both technologies in complex
devices that interact in mixed domains.

For the optical domain, however, we need to explicitly con-
sider the propagation medium as well as the optical components
themselves. This is because in free space, optical signals do not
simply propagate point to point.

IV. OPTICAL PROPAGATION

When optical wavefronts interact with the small feature sizes
of microsystems, many of the common optical propagation
modeling techniques become invalid, and full vector or scalar
solutions to Maxwell’s equations are required for accurate
simulation [32]. However, these accurate solutions are compu-
tationally intensive, making interactive design between system
designer and CAD tool almost impossible. As more optical
components are introduced into microsystems and the systems
become more complex, the demand for computationally
efficient simulation tools increases. Therefore, the problem of
optical modeling in MSMD microsystems is twofold: first, a
rigorous model is needed to model optical propagation, and,
second, the model must be computationally efficient.

To reduce the computational resources of modeling the op-
tical wavefront completely by the vector solution of Maxwell’s
equations, a scalar representation is commonly used. Scalar op-
tics are defined by summarizing the electric field vector,, and
the magnetic field vector, , by a single complex scalar,. This
replacement is valid if the propagation medium is dielectric,
isotropic, homogenous, nondispersive, and nonmagnetic. Prop-
agation through free space meets these requirements.

This complex scalar must satisfy the Helmholtz wave equa-
tion, , where, the wave number, .
With use of Green’s theorem, the Rayleigh–Sommerfeld formu-
lation is derived from the wave equation for the propagation of

Fig. 8. Aperture and observation coordinate system in the
Rayleigh–Sommerfeld approximation.

light in free space from the aperture plane to a parallel
observation plane , as seen in Fig. 8 [33]

(6)

where, , is the area of
the aperture, and is the distance that the light is propagated
from an aperture plane to the observation plane. The
formulation is valid as long as both the propagation distance
and the aperture size are greater than the wavelength of light.
These restrictions are based on the boundary conditions of
the Rayleigh–Sommerfeld formulation, and the fact that the
electric and magnetic fields cannot be treated independently at
the boundaries of the aperture [33]. To compute the complex
wavefront at the observation plane, each plane is discretized
into an mesh. Using a direct integration technique, the
computational order of the Rayleigh–Sommerfeld formulation
is O(N ).

The far (Fraunhofer) and near (Fresnel) field approximations
of the scalar formulation reduce the computational demand,
using a fast Fourier transform (FFT) for optical propagation.
However, we have shown that these techniques are not valid for
typical microsystem dimensions [32]. In the interest of reducing
the computational load of using a full scalar technique, we have
recast the Rayleigh–Sommerfeld formulation using an angular
spectrum technique.

A. Angular Spectrum Technique

As an alternative to direct integration over the surface of
the wavefront, the Rayleigh–Sommerfeld formulation can also
be solved using a technique that is similar to solving linear,
space-invariant systems. Reexamining the Rayleigh–Sommer-
feld formulation, it can be seen that the equation is in the
form of a convolution between the complex wavefront and the
propagation through free space [34]. The FFT of the complex
optical wavefront results in a set of plane waves traveling in
different directions away from the surface [33]. Each plane
wave is identified by the components of the angular spec-
trum. At the observation plane, the plane waves are summed
together by performing an inverse FFT, resulting in the prop-
agated complex optical wavefront at the observation plane.
Brief details of the technique follow.

To solve the Rayleigh-Sommerfeld formulation with the an-
gular spectrum technique, we first examine the complex wave-
front at the aperture plane. The wave function has a
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2-D FFT, , in terms of angular frequencies, and

(7)

where, and .
From the equation, the plane waves are defined by

and the spatial frequencies define the
directional cosines, and , of the plane waves
propagating from the origin of the aperture plane’s coordinate
system.

The free-space transfer function in the frequency domain has
been computed by satisfying the Helmhotz equation with the
propagated complex wave function,

(8)

This describes the phase difference that each of the plane
waves, differentiated by the angular, or spatial frequencies, ex-
periences due to the propagation between the parallel planes.
Therefore, the wave function after propagation can be trans-
formed back into the spatial domain with the following inverse
FFT

(9)

The advantage of using the angular spectrum to model light
propagation is that the method is based on the FFT. The compu-
tational order of the FFT for a 2-D input is O(N N).

In continuous theory, the angular spectrum method is an exact
solution of the Rayleigh–Sommerfeld formulation. However,
when using a discrete FFT, the accuracy of the angular spectrum
method depends on the resolution of the aperture and observa-
tion plane mesh.

We have determined in 2-D space that with a mesh spacing of
, the angular spectrum decomposition will en-

sure plane waves propagating from aperture to observation plane
in a complete half circle, that is, between90 and 90 degrees
[35]. For many simulation systems without large degrees of tilt
and hard diffractive apertures, the resolution can be coarser. In
systems with high tilts, the resolution is most sensitive.

Now that we have introduced our modeling techniques for
electrical, mechanical components, and optical propagation,
we present an example microsystem, which spans these three
domains.

V. EXAMPLE SYSTEM: A GRATING LIGHT

VALVE (GLV) PROJECTOR

To provide motivation for our MSMD CAD tool, we examine
one of the more promising optical MEM components, the GLV
[36]. This device has many display applications, including dig-
ital projection, HDTV, and vehicle displays. The GLV is simply

(a)

(b) (c)

Fig. 9. GLV device. Top view (a) and side views: ribbons all up (b) and
alternating ribbons pulled down (c).

a MEM phase-grating made from parallel rows of reflective rib-
bons. When all the ribbons are in the same plane, incident light
that strikes normal to the surface reflects 180off the GLV cre-
ating the so called zeroth mode of a diffraction pattern. However,
if alternating ribbons are moved down a quarter of a wavelength

of the incident optical light, a “square-well” diffraction
pattern is created, and the light is reflected at an angle from
that of the incident light, into the odd (1st, 3rd) diffractive
modes. The angle of reflection depends on the width of the rib-
bons and the wavelength of the incident light. Fig. 9 shows the
ribbons, from both a top and side view, and also the reflection
patterns for both positions of the ribbons.

The GLV component is fabricated using standard silicon
VLSI technology, with ribbon dimensions approximately 3–5

m wide and 20–100 m long. Each ribbon moves through
electrostatic attraction between the ribbon and an electrode
fabricated underneath the ribbon. This electrostatic attraction
moves the ribbons only a few hundred nanometers, resulting in
an approximate switching time of 20 ns. Since the simulation of
a GLV system relies on the optical wavefront, the mechanical
displacement of the ribbons, and the electrostatic attraction be-
tween the ribbons and the substrate, a CAD tool that can model
the multidomains and interactions between these domains is
required.

A. GLV Simulation

In this section, we present simulation and analysis of the GLV
system. For the simulations of the GLV, we examine one optical
pixel. A projected pixel is diffracted from a GLV composed of
four ribbons, two stationary and two that are movable [36]. In
our simulations, each ribbon has a length of 60m, a width of
5 m, and a thickness of 1.5m, for a total GLV pixel size of
60 20 m. The ribbons are made of silicon nitrite (density
3290 Kg/m , Young’s modulus 290 10 N/m ), and coated
with aluminum for smoothness and reflectivity. In these simula-
tions, we assume there is no gap between the ribbons, however,
in reality, a gap is present and is a function of the feature size of
the fabrication.

The model of the GLV is twofold: an electromechanical
model simulating the movement of the ribbons toward the
substrate, and the optical model simulating the reflection of the
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(a)

(b)

Fig. 10. (a) Two-stage CMOS driver for GLV and (b) driver input–output response.

optical wavefront off of the ribbons. The ribbon is modeled
as a thin cantilever beam anchored on each end. The beam is
modeled in PWL segments, and is electrostatically attracted to
the silicon substrate, which is covered with 500 nm of silicon
dioxide. The voltage is applied between the ribbon and substrate
electrode by a two-stage CMOS amplifier seen in Fig. 10(a).
This electrical driver is modeled as described previously, and
its response to a 0–5-V input ramp is also shown in Fig. 10(b).
The air gap between the ribbons and the surface is 0.65m.
This electrostatic model is connected to the optical GLV model
through a “wire” containing the displacement of each node
that comprise the model of the ribbon. A linear interpolation
between the nodes is required for the optical mesh points that
do not fall on the ribbon’s nodes. The effect of the ribbon
movement is optically modeled as a phase grating, where the
light that strikes the down ribbons propagates further than the
light that strikes the up ribbons. In our model, light reflecting
from the down ribbons is multiplied by a phase term. The
phase term is similar to a propagation term through a medium:

, where, is the distance that the
ribbon is moved toward the substrate andis the wave number,

.

Since the ribbon ends are anchored, the alternating ribbons
are not flat as they are electrostatically attracted to the substrate.
As expected the beams are curved. In the simulations, the ribbon
is composed of an equal sized numberof segments or basic
beams, totaling nodes. The layered shape of the ribbon
with forces and movement limited to one plane justify the use
of the basic beam element for the modeling of the mechanical
structure. The analysis is reduced to a 2-D problem in the plane
of the displacement. The accuracy of the mechanical simulation
can be increased if a larger number of these basic elements are
used at the cost of an increase in computation time. The reso-
lution of higher fundamental nodal frequencies is proportional
to the number of these segments. Simulation output data show
the shape of the curved beams as the voltage between the rib-
bons and the substrate electrode is ramped between 0 and 12 V.
For these simulations, we examine cases with 5, 11, 21, and 41
nodes. The mechanical deformation of the ribbon for the 11 and
41 node case is displayed in Fig. 11(a) and (b). Note that the

axis is in nanometers and theaxis is in microns.
We first perform simulations, in which ideal alternating flat,

nonanchored ribbons move toward the substrate. We assume an
incident plane wave of green light ( nm) striking the
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(a)

(b)

Fig. 11. Ribbon displacement at 1 V increments, (a) 11 node model and (b) 41 node model.

grating, with the square-well diffraction period defined by the
ribbon width. We simulate the GLV in both cases, that is, when
all the ribbons are on the same plane and when the alternating
ribbons are moved downward a distance of 130 nm, or. In
this example, the light is reflected off of the grating and prop-
agated 1000 m to an observation plane. An optical window
of 400 400 m is used, with an optical meshing equal to
256 256. Intensity contours of the optical waveform at the
observation plane are presented in Fig. 12(a) for the case when
the ribbons are all aligned, and when alternating ribbons are
pulled down a distance equal to a quarter of the wavelength
of the incident light, Fig. 12(b). Notice that the output optical
waveform’s height and widths are not equal. This is due to the
rectangular shape of the GLV pixel, 60 20 m. Also notice

that the optical waveform appears to be in two lobes. This is a
near-field optical effect of light propagating through a rectan-
gular aperture and demonstrates that in this system, light prop-
agating 1000 m is not in the far field. This near-field effect
highlights that the common scalar approximations, such as the
Fraunhofer far-field approximation, would provide inaccurate
simulation results, and the full Rayleigh–Sommerfeld formula-
tion is required for accurate results.

The example is now resimulated with realistic curved ribbons.
When curved ribbons are attracted down toward the substrate,
the diffractive optical output is no longer ideal, as can be seen
in the intensity contour of Fig. 12(c). Since the beam is curved
from the anchors, a square-well diffraction pattern is no longer
achieved, and the optical intensity contour appears to be a mix
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(a)

(b)

(c)

Fig. 12. GLV operation: (a) ribbons all up, (b) ideal ribbon displacement, and
(c) curved ribbon displacement.

of the ideal cases seen in Fig. 12(a) and (b). The light reflecting
from the middle of the ribbon, which is pulled down approxi-
mately (130 nm), creates the1st diffractive modes. These
modes are now more circular, since effectively a 2020 m
square-well is created in the center of the GLV device. The re-

mainder of the light reflecting off the ribbons reflects straight
off the GLV and creates the light found in the 0th mode.

In the next simulation, we performed a transient sweep of the
applied voltage between the ribbon and the substrate electrode,
from 0 to 12 V, with a complete switch occurring in 600s. The
rest of the system setup is exactly the same as before. However,
this time, we simulate the encircled power captured in the1st
diffraction mode for different ribbon depths. To simulate this, a
circular detector (radius 10 m) is placed on the 1st mode.

Fig. 13 shows two graphs. The first graph shows the displace-
ment of the center ribbon node and the input voltage with re-
spect to time. From this result, we present the second graph in
which we show how the ribbon movement affects the (normal-
ized) encircled energy captured on the first mode detector. We
can see, as the ribbons are attracted to the substrate, more op-
tical power is diffracted into the nonzero modes. As the ribbons
reach the point (130 nm), the diffractive power peaks in
the 1st mode. Beneath the two graphs in the figure are inten-
sity contours of selected wavefronts during the transient sim-
ulation, along with markings of the system origin and circular
detector position. From these wavefronts, interesting diffractive
effects can be observed. As expected, when there is little voltage
applied, all the light is in the 0th mode. As the ribbons move
downward about (65 nm), the energy in the1st modes is
clearly defined. As the gratings move closer to the point,
more power is shifted from the 0th mode into the1st modes.
As the ribbons start to return to their original position, the op-
tical power shifts back into the 0th mode.

B. System-Level Simulation Performance

Using the same simulation environment we conducted the fol-
lowing tests to illustrate the speed/fidelity tradeoffs that can be
done with a system–level simulation tool.

For reference, Fig. 14(a) shows the diffraction pattern at max-
imum ribbon displacement for a ribbon modeled with 5 seg-
ments and the scalar wavefront modeled with a 128128 mesh.
Fig. 14(b) shows the same system modeled with a 41-segment
ribbon and a 512 512 mesh. What can be seen is the improve-
ment in the degree of resolution of the wavefront, in particular
the appearance of low-power third-order modes.

Additionally, Fig. 15 shows the dynamic response of the
ribbon driven at a high switching frequency. The high stiffness
of the structure gives it a fast response time as observed.
However, under this stimulus, resonant effects are observed in
the displacement of the nodes. The visible pattern of damped
oscillations shows that the stiffness affects maximum operating
speed of this device.

The accuracy of the mechanical simulation was also com-
pared to modal analysis of the ribbon using ANSYS. The
11-node model matches the nine first-modal frequencies with a
maximum difference of 2.24% at the highest frequency. For the
21-node model the tenth modal frequency differs by less than
0.59%. The 41-node model reduces this difference to 0.15%.
As expected, to accurately capture higher modal frequencies,
a larger discretization is required. Similar performance in the
mechanical simulation of MEMs using this technique and its
verification against NODAS [13] and ANSYS has previously
been reported [29], [23].
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Fig. 13. GLV simulation graphs and intensity contours.

(a) (b)

Fig. 14. Diffraction pattern at maximum ribbon displacement. (a) Ribbon model with 5 segments and 128� 128 mesh for optical wavefront. (b) Ribbon model
with 41 segments and 512� 512 mesh for optical wavefront.

Table I shows system simulation time1 as a function of both
the scalar mesh resolution and the number of segments in the
ribbon. The mechanical subsystem time includes the initializa-
tion of the MNA as well as the solution times for the entire
movement for the 2.4 ms stimulus. The optical subsystem time
includes both the scalar propagation time and the detector power
integration time. The optical propagation time averaged 30 ms
for the 128 128 case and 490 ms for the 512512 case,
while the integration time went from 2 to 41 s, respectively.
We note that for typical systems, optical detection need only be
done at the receivers after several stages of optical propagation.
The system time included the electrical simulation of the CMOS
driver, as well as initialization overhead. In previous work, we

1For the simulations, a dual Pentium 1.7 GHz/Xeon processor with 4 GB
RAM/PC800, running under Red Hat linux 7.1. was used.

reported that the PWL electrical simulator was able to simu-
late simple CMOS circuits with a relative accuracy of 5% when
compared to SPICE and with speedup factors of up to 100 [29].

What is interesting to note here, is the range of simulation
time, 3 seconds for the 5-element, 128128 case to 168 sec-
onds for the 41-element, 512512 case and the commensurate
increase in fidelity of the resulting optical waveforms shown
in Fig. 14(a) and (b). Similarly, Fig. 15 shows a high-fidelity
description of the ribbon. What this illustrates is that we can
use the same behavioral descriptions, in the same system-level
simulation environment, to perform both interactive “what if”
design exploration as well as more detailed investigations of
higher order effects by simply changing the simulation param-
eters (e.g., optical mesh size, number of mechanical nodes,
number of regions of operation for nonlinear elements, and
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Fig. 15. Nodal displacements in 11-node ribbon model with high-frequency drive signal (10�s-switching time). Note that symmetrical nodes in the structure
(e.g., nodes 2 and 10) show identical responses.

TABLE I
GRATING LIGHT VALVE SYSTEM SIMULATION TIME

minimum time step) without recourse to lower level simulation
tools.

VI. SUMMARY AND CONCLUSION

We have introduced the challenges in modeling MSMD
microsystems. In this paper, we have addressed the need for
a consistent behavioral modeling methodology that spans the
multiple technologies of electronics, optics, and mechanics.
We have also shown how to use PWL models to capture the
behavior of nonlinear elements in these domains. Our simu-
lation method at the component level, based on MNA, allows
the designer to trade modeling and simulation accuracy for
simulation speed. Our angular spectrum scalar representation
for free space optical signal propagation allows us to model
microoptical components in the near-field and still perform
system-level simulations in reasonable time, supporting the
system designer in performing design tradeoffs in an interactive
design environment.
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