
Notes on Very-Large-Scale Integration and the Design of Real-Time Digital Sound Processors
Author(s): Mark Kahrs
Source: Computer Music Journal, Vol. 5, No. 2 (Summer, 1981), pp. 20-28
Published by: The MIT Press
Stable URL: http://www.jstor.org/stable/3679876
Accessed: 19/03/2009 15:51

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=mitpress.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

The MIT Press is collaborating with JSTOR to digitize, preserve and extend access to Computer Music
Journal.

http://www.jstor.org

http://www.jstor.org/stable/3679876?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=mitpress

Mark Kahrs
Computer Science Department
University of Rochester
Rochester, New York 14627

Introduction

Since the 1960s, electronic components that make
up digital systems have been packaged as tiny inte-
grated circuits (ICs) or chips. There has been steady
progress since that time in making the components
smaller and thereby packing more components per
chip. This has led to several generations of IC de-
vices, from small-scale integration (SSI), with only a
couple of components per chip, to medium-scale
integration (MSI) and large-scale integration (LSI),
with tens of thousands of components per chip
(Myers 1980). As a result of improvements in the
technology of chip fabrication, achievable circuit
densities continue to grow higher. The present level
of density extends into very-large-scale integration
(VLSI).

The Present State of the Art

New digital sound processor technologies are made
possible by the introduction of VLSI technology. In
a recent survey of integrated circuits and signal pro-
cessing, Hoff (1980) points out the increasing com-
plexity that is coming with the introduction of
VLSI technology. At the present time, chips like the
Motorola MC68000, a 16-bit microprocessor with
68,000 transistors, are at the upper limit of today's
mass production (Fig. 1). As the size of circuit fea-
tures decreases more in the next few years, one can
expect to see dramatic increases in chip density and
functional capacity. Some estimates place as many

Computer Music Journal, Vol. 5, No. 2, Summer 1981,
0148-9267/81/020020-09 $04.00/0
? 1981 Massachusetts Institute of Technology.

Notes on Very-Large-
Scale Integration and

the Design of Real-Time

Digital Sound

Processors

as one million logic gates per chip by 1990 (each
logic gate may comprise several transistors).

There are five principal limitations in VLSI de-
sign: chip size, device density, circuit speed, com-
plexity of device interconnects on the chip, and
number of pinouts (the number of pins emanating
from a chip's package). When designing a VLSI
sound processor, one must consider various trade-
offs. For example, one can conserve on the number
of pins used by adding multiplexers to the chip, al-
lowing any one pin to be used for more than one
purpose. The demands of real-time computation
put an extra burden on digital processors. For such
real-time processors, duplication of chip circuitry
can increase the speed of signal-processing al-
gorithms at the cost of additional "real estate" on
the chip being dedicated to the parallel circuits.

Current Sound Processors

I began my research into VLSI and digital sound
processors by considering existing processors im-
plemented using MSI technology. The 4B Machine
at the Institut de Recherche et Coordination Acous-
tique/Musique (IRCAM) (Alles 1976; 1980) and the
Systems Concepts Digital Synthesizer (Samson
1980) were examined for ideas usable in a VLSI
implementation.

The 4B is a multiplexed machine, that is, it runs
fast enough to compute a number of voices of
sound in the time between sample periods. Trans-
lating this machine into a single chip would not be
a terribly difficult job. The machine does have a
problem, however. When generating line segments
for functions (e.g., envelope curves) the 4B allows
timer interrupts to be set for the endpoints of the

Computer Music Journal 20

Fig. 1. The MC68000 mi-
croprocessor chip. (Photo-
graph supplied by courtesy
of Motorola Semiconduc-
ter, Austin, Texas.)

line segments. This can put a considerable load on
the host processor, which is feeding parameters
from the score to the 4B to control the sound syn-
thesis. In the case of the 4B the host computer is
a slow LSI-11. The LSI-11 is constantly being in-
terrupted and asked to supply more data; this is
known as the parameter-update problem.

The Systems Concepts Digital Synthesizer is a
large, pipelined processor built using MSI technol-
ogy. It has 256 generators, 128 modifiers, and a mix-
ing memory called sum memory. Unfortunately,
the machine appears to be designed mainly for fre-
quency modulation (FM) and additive synthesis,
rather than as a truly general-purpose synthesizer.
Attempts to use the machine for synthesis tech-
niques other than additive and FM synthesis are
sometimes successful, but implementation is
somewhat contrived. As a stream processor, the
Systems Concepts synthesizer has another prob-
lem. Commands to the synthesizer are read from
memory and executed until a command is given to

stop temporarily and allow processing of sound to
take place. The problem arises when one must inte-
grate a command stream that comes from diverse
input sources such as knobs and keyboards being
played by musicians. This real-time input problem
must be solved if such processors are to be used in
live performance. Designers of digital sound pro-
cessors will face other problems that will come up
as the designs become more refined.

Current Algorithms

As more processing power becomes available on
each chip and as the complexity of what musicians
want to accomplish with such chips increases, it
becomes necessary to think about processors dif-
ferently. Commonly used signal-processing al-
gorithms can be committed to firmware, thus
simplifying the software environment considerably.
Rather than consider, What algorithms can I imple-
ment using this beast? the chip designer must con-
sider, What algorithms should I implement in
silicon? Therefore, the designer of any new digital
sound processor must consider what algorithms the
user wants to implement. These might include lat-
tice filtering, convolution, waveshaping, additive
synthesis, and other algorithms useful for sound
generation. In the following sections, two VLSI ar-
chitectures for music processing will be discussed
that address the issues pointed out so far.

A Command-Stream Processor

The purpose of the command-stream processor
is to solve the real-time input problem. One needs
to be able to mix many external sources of com-
mands and data into a single command stream. One
immediate difficulty is the instability of analog
components often used in input devices such as
potentiometers. In particular, the reference levels of
analog-to-digital converts (ADCs) tend to wander.
Use of a hysteresis register is one way to solve this
problem. The contents of this register are compared
against the current input (which is masked) and
will match if the masked bits equal the last known

Kahrs 21

Fig. 2. The internal bus is
a tri-state precharged bus.
The multiplier and adder
are latched, allowing oper-
ations to proceed while
computations are being
performed. There is one
multiplexer that connects

the coefficient ROM and
the register bank to the in-
ternal bus. The output of
the adder is connected to a
"breakpoint" detection cir-
cuit that detects the end-
points of line segments.
The time-tick bus is a se-

rial input connected to a
global clock. The slot-ad-
dress bus contains the ad-
dress broadcast by the slot
clock. When the slot of the
chip is recognized by the
slot recognition logic, one
byte from the FIFO is put

onto the central data bus.
The external world can
communicate by using the
latched "world" input.
This circuit has a "hys-
teresis" circuit that allows
for instability in ADCs
and other inputs.

ALU and Breakpoint Checking

Memories

input. Such a sample can then be ignored. Thus the
main processor doesn't have to be interrupted for a
"new" value so often.

Samples gathered from these input devices
(knobs, joysticks, etc.) usually must be scaled at
some point in the processing. The command-
stream processor can do this for the sound pro-
cessor if it has its own on-chip multiplier. Then, in
order to provide linear interpolation between end-
points of envelope line segments, an adder is also
available on the command-stream-processor chip.
The whole processor is controlled by a horizontal

microprogram store. In such a scheme, a very wide

(hence horizontal) control word directly controls
the flow of internal signals within the processor.
The control words are stored in a microprogram
read-only-memory (ROM) implemented as a pro-
grammable logic array (PLA). PLAs are ubiquitous
in VLSI design (Mead and Conway 1980). Most
commonly, they are implemented as an array of
AND/OR gates which the designer can selectively
connect by changes in the metalization layer. The
data paths for the command-stream processor are
shown in Fig. 2.

In the implementation of the command-stream
processor, note that the data paths are parallel

Computer Music Journal

I I

22

Fig. 3. This is a layout of
the command-stream-pro-
cessor chip without the in-
put or output pads. The

area taken up is approx-
imately 3000 by 4000
microns.

Control Bus

Coefficient Scratchpad Adder
ROM RAM
(PLA)

Internal Bus
I * -

8 by 8 Multiplier FIFO

Control
ROM
(PLA)

rather than serial. Although the space consumed by
the parallel circuits is larger than serial (Freeny
[1975] states that parallel multipliers consume four
times the space of serial multipliers), the payoff is
speed. Serial circuits can be used effectively in sig-
nal processors (Jackson, Kaiser, and McDonald
1967; Lyon 1980), but I felt that the speed to be af-
forded by parallel design was worth the cost in chip
space.

The implementation of this processor will be in
n-channel metal-oxide semiconductors (NMOS)
(Mead and Conway 1980). A layout of the chip is
shown in Fig. 3.

A Sound Processor

So far, I have discussed ways to overcome the lim-
itations in the bandwidth brought about by multi-
ple, real-time command lists. In this section, I will
discuss some considerations in the design of the
signal processor that does the work of musical
sound generation.

One can begin by considering exactly what al-

gorithms will be implemented using the sound pro-
cessor. This is a synthesis machine, not to be used
for sound analysis. By and large, the computational
demands of analysis and synthesis machines differ.
Analysis algorithms are mostly block algorithms.
These require an entire array (block) of samples be-
fore processing can take place. Although such al-
gorithms are useful, in this article I will not discuss
processors that implement them. What kinds of
synthesis algorithms would be implemented? There
are at least three major techniques:

1. Additive synthesis. This involves combin-
ing many relatively simple signals (such as
sine waves), each with its own frequency
and amplitude envelopes, to form complex,
evolving timbres (Moorer 1977).

2. Subtractive synthesis. This takes a spec-
trally rich waveform and filters the sound
down into a less complex timbre (Markel
and Gray 1976).

3. Nonlinear synthesis. This involves modu-
lations of signals with each other (FM,
waveshaping, etc.) to produce rich, evolving
timbres (Chowning 1973; LeBrun 1979; Ar-
fib 1979).

Additive synthesis, with its individual envelopes for
each partial of a complex sound, can be computa-
tionally expensive. Subtractive synthesis tech-
niques also make substantial demands. This arises,
for example, in realizing the linear-predictive-cod-
ing (LPC) synthesis technique, often used for syn-
thesizing speech sounds (Markel and Gray 1976). In
the lattice implementation of LPC, a multiplier
must be provided. In waveshaping, the principal de-
mand is for a large lookup table and another multi-
ply. (This table could also be used for artificial
reverberation.) Clearly, a large lookup table is a nec-
essary requirement for any synthesis processor.
Note that the Systems Concepts synthesizer has an
external memory of 128 Kbytes accessible through
the modifiers. Although a large memory is desir-
able, its place is not on the processor chip. It is
easier to buy the memory chips and put only the
interface to the memory on the processor chip.

Many existing signal processors do not have
branch instructions. This is often due to the com-

Kahrs

0

23

Fig. 4. In this rather con-
ventional sound processor,
notice that all the inputs
from the common bus are
latched. This one level of
pipelining allows the com-
putation to proceed in par-

allel throughout the chip.
Notice also that the off-
board memory could be
quite large, which is the
reason for placing it off the
chip. External input is
buffered in the external

register. Note the bypasses
on the inputs to the ALU
and multiplier. This al-
lows results from the
common bus to be used
immediately in the next
step of computation.

To External World

plexity of the machine architecture. This lack of
branch instructions can prove to be a handicap in
the implementation of algorithms such as matrix
inversion or pitch extraction.

If the signal-processing lessons of the Digital
Voice Terminal are of any help (Gold 1974), then

the processor should have as much raw speed as
possible. Pipelining within the processor is one way
to achieve this. Multiple computation units that are
spread across the task (such as found in the IBM
Model 360/91) are another way to achieve higher
execution speeds (Tomasulo 1967).

Computer Music Journal

I I

24

In Fig. 4, the data path of a rather ordinary sound
processor that can be implemented in NMOS is
given. Notice that the processor has an "outboard"
memory and an internal multiplier. Once again, the
processor is microprogrammed. This is more than a
consideration for user programming of the control
store. As processors get more complicated, it gets
more difficult to design the processor to be logically
correct. Using random logic only exacerbates this
problem. The MC68000 is an example in which
microprogramming was used to avoid bugs in the
control section of the processor (Stritter and Tre-
dennick 1979).

Each unit of the processor has latches on the in-
put and the output so that processing may proceed
without a wait for the results of a given operation
(i.e., overlapped execution). The machine is syn-
chronous, and results are latched when the execu-
tion unit finishes its action. Notice that the result
bus can be connected directly to the execution
units. This allows the current results on the bus to
"bypass" the latches on the input side of the execu-
tion units.

The One-Voice One-Processor Doctrine

In the processor organizations discussed so far, it
has been assumed that only one high-speed pro-
cessor is available. With the advent of low-priced
processors, lack of processor cycles should not be
permitted to be a problem. Unfortunately, some of
the problems of computer networking are then in-
troduced. If we modify the existing architecture of
the processor shown in Fig. 1 to have multiple pro-
cessors, the interconnection of input modules and
the sound processor modules becomes a problem.
It's not sufficient just to restrict each sound-pro-
cessor module to have one input module because
one might want a single input device to affect many
processors. A crossbar switch such as is shown in
Fig. 5 would be ideal. Such a switch was used in
C.mmp (Wulf and Bell 1972). C.mmp was com-
posed of slightly modified DEC PDP-11/40 pro-
cessors augmented with a writable control store.
Up to 16 of these processors could be connected to

up to 16 shared memory modules through a 16 by
16 crosspoint switch (Jones and Schwartz 1980). Of
course, C.mmp's problem is well known: the num-
ber of switches increases as the square of the num-
ber of inputs and the area increases likewise.

Another solution to the problem is to use a bus
and grant the bus (arbitrate it). Suppose each of the
processors is connected in a chain. Then each pro-
cessor could pass the control token to the next pro-
cessor when it was finished putting data on the bus.
But of course then the sound processor must know
which real-time input placed the data on the bus.
Therefore, a new bus is needed that buses the pro-
cessor ID of the input on the data bus. All pro-
cessors can sample the bus to find out which input
is there. The problem with this is that each pro-
cessor must filter out the real-time requests on the
data bus. This again introduces the parameter-up-
date problem!

Other possible bus organizations include a time-
division multiplexed (TDM) bus or an Ethernet-like
network where each real-time input has a time slot
(an address in the Ethernet scheme) and they com-
municate by broadcasting to the other processor
(Metcalfe and Boggs 1976). Of course this too has
its problems-the TDM bus requires that pro-
cessors wait for the proper time slot. Ethernet was
designed to be "unreliable" in the sense that it
keeps retransmitting a message over the network
until it receives an acknowledgment; it does not as-
sume the message got through on the first trans-
mission. Unfortunately, there is no upper bound on
the time it can take a packet of information to be
transmitted and received. Because of the basically
slow rate of change (with respect to the processor)
involved in parameter update, a TDM-bus scheme
was used in the command-stream processor.

Notice that in Fig. 6 a new mixing processor has
been added to the output of the three sound pro-
cessors. There must be one mixing processor per
channel of output sound. With a fast mixing pro-
cessor, this could be simulated through the use of
multiplexing, since even at a 50-KHz sampling rate
for audio, the samples would have to be added at a
rate of 20 Lsec each, well within the range of the
processor's speed.

Kahrs 25

Fig. 5. A musical crossbar
processor (a la C.mmp)
that allows the command
stream to be directed to
any sound processor. The

problem with the network
is the second-order nature
of the connections (N by
M).

Command-List
Processors

Sound Processors

Designing the Processor for the Algorithm
Instead of Vice Versa

In the design of VLSI processors, a prominent con-
cern is to design the processor for the algorithm.
This is based on the belief that processors will de-
crease in cost, and that by customizing the pro-
cessor for the algorithm speed can be obtained. An
example of customizing the processor can be found
in the work of Kung (1980). Systolic algorithms are
formed by arrays of processors that communicate
with their neighbors and form rectilinear arrays. For
example, Kung has designed second-order filters, a

convolution box, and a discrete-Fourier-transform
(DFT) box. A special-purpose reverberation box
could use a convolution box to implement rever-
beration using the impulse response of a hall. As
more research is done into sound-generation al-
gorithms, perhaps more of them can be placed into
systolic form.

Conclusion

In this article, I have explored a tip of the VLSI
iceberg. Computer music's high computational re-
quirements are an ideal problem for VLSI technol-

Computer Music Journal

I I

26

Fig. 6. This figure demon-
strates the connections of
the various chips in a
time-division multiplexed
system. Notice the addi-
tion of a score processor,
which generates com-

mands that are not depen-
dent on real-time inputs.
There is a global clock and
slot clock, which broad-
casts the current slot on
the slot bus. Data is gated
to the stream bus, which

then feeds the sound pro-
cessors. The sound pro-
cessors in turn feed
another sound processor
that acts as a mixer. A
DAC connects the signal
back to analog levels.

Knob Pedal

Slot
Clock

Keyboard

Clock

Kahrs

Finger Pad

I I

27

ogy to solve. Research is required in many areas.
More research is needed into the structure of al-

gorithms used by computer musicians, particularly
the implementation of algorithms that are com-

putationally expensive. Multiprocessor imple-
mentation of complex algorithms would be of con-
siderable interest to VLSI designers. If computer
musicians engage in a dialogue with VLSI design-
ers, then profitable results for both sides will surely
follow. I hope this article will start some of that

dialogue.

Acknowledgments

Many of these ideas have been "in the air." I hope
I haven't broken any feet by presenting them here. I

appreciate the comments of John Snell, Peter Eastty,
and Curtis Abbott, but I am solely responsible for
this article's content. This clandestine research has
been sponsored by the Sloan Foundation under

grant 78-4-15 and by the Defense Advanced Re-
search Projects Agency under contract number
N00014-78-C-0164.

References

Alles, H. G. 1976. "A Portable Digital Sound Synthesis
System." Computer Music Journal 1(4): 5-9.

Alles, H. G. 1980. "Music Synthesis Using Real-time
Digital Techniques." Proceedings of the IEEE
68(4):436-449.

Arfib, D. 1979. "Digital Synthesis of Complex Spectra by
Means of Multiplication of Nonlinear Distorted Sine
Waves." Journal of the Audio Engineering Society
27(10): 757-768.

Chowning, J. M. 1973. "The Synthesis of Complex Audio
Spectra by Means of Frequency Modulation." Journal of
the Audio Engineering Society 21(7): 526-534. Re-
printed in Computer Music Journal 1(2):46-54.

Freeny, S. L. 1975. "Special-purpose Hardware for Digital
Filtering." Proceedings of the IEEE 63(4): 633-648.

Gold, B. 1974. "Parallel and Sequential Trade-Offs in Sig-
nal Processing Computers." In National Telecom-
munications Conference of 1974, pp. 491-495.

Hoff, M. E., Jr. 1980. "IC Technology: Trends and Impact

on Digital Signal Processing." Proceedings of the
ICASSP, pp. 1-6.

Jackson, L. B., J. F. Kaiser, and H. S. McDonald. 1967. "An
Approach to the Implementation of Digital Filters."
IEEE Transactions on Audio and Electroacoustics
AU-16(3):413-421.

Jones, A., and P. Schwartz. 1980. "Experience Using Mul-
tiprocessor Systems-A Status Report." Computing
Surveys 12(2): 121-165.

Kung, H. T. 1980. "Special-purpose Devices for Signal and
Image Processing: An Opportunity for VLSI." CMU
Technical Report. Pittsburgh, Pennsylvania: Depart-
ment of Electrical Engineering and Computer Science,
Carnegie-Mellon University.

LeBrun, M. 1979. "Digital Waveshaping Synthesis." Jour-
nal of the Audio Engineering Society 27(4):250-265.

Lyon, R. F. 1980. "Signal Processing with VLSI." Un-
published ms.

Markel, J. D., and A. H. Gray, Jr. 1976. Linear Prediction
of Speech. New York: Springer-Verlag.

Mead, C., and L. Conway. 1980. Introduction to VLSI
Systems. Reading, Massachusetts: Addison-Wesley.

Metcalfe, R. M., and D. R. Boggs. 1976. "Ethernet: Dis-
tributed Packet-switching for Local Networks." Com-
munications of the ACM 19(7): 395-404.

Moorer, J. A. 1976. "The Synthesis of Complex Audio
Spectra by Means of Discrete Summation Formulas."
Journal of the Audio Engineering Society 24(9):717-
727.

Moorer, J. A. 1977. "Signal Processing Aspects of Com-
puter Music." Computer Music Journal 1(1):4-37.

Moorer, J. A. 1979. "About This Reverberation Business."
Computer Music Journal 3(2): 13-27.

Moorer, J. A. 1981. "Synthesizers I Have Known and
Loved." Computer Music Journal 5(1): 4-12.

Myers, G. 1980. System Design with LSI Bit-slice Logic.
New York: Wiley Interscience.

Samson, P. 1980. "A General-Purpose Digital Synthe-
sizer." Journal of the Audio Engineering Society 28(3):
106-113.

Stritter, S., and N. Tredennick. 1979. "Microprogrammed
Implementation of a Single Chip Microprocessor." In
11th Micro Proceedings, pp. 8-16.

Tomasulo, R. M. 1967. "An Efficient Algorithm for Ex-
ploiting Multiple Arithmetic Units." IBM Journal of
Research and Development January:25-33.

Wulf, W. A., and C. G. Bell. 1972. "C.mmp-A Multi
Mini Processor." Proceedings of the Fall Joint Com-
puter Conference 41: 765-777.

Computer Music Journal 28

	Article Contents
	p. 20
	p. 21
	p. 22
	p. 23
	p. 24
	p. 25
	p. 26
	p. 27
	p. 28

	Issue Table of Contents
	Computer Music Journal, Vol. 5, No. 2 (Summer, 1981), pp. 1-78
	Front Matter [pp. 1 - 1]
	Editor's Notes [p. 2]
	Errata to Beauchamp, Cann, Lorrain, Smoliar, Strawn, Roads and Greussay [pp. 2 - 3]
	Announcements [pp. 4 - 6]
	Letters [pp. 7 - 9]
	Timbre and the Perceptual Effects of Three Types of Data Reduction [pp. 10 - 19]
	Notes on Very-Large-Scale Integration and the Design of Real-Time Digital Sound Processors [pp. 20 - 28]
	Computer-Plotted Graphics [pp. 29 - 35]
	Report on the International Computer Music Conference, Queens College, November 1980 [pp. 36 - 44]
	Compositional Applications of Stochastic Processes [pp. 45 - 61]
	Reviews
	Publications
	untitled [pp. 62 - 66]
	untitled [pp. 66 - 67]
	untitled [pp. 67 - 68]

	Records
	untitled [pp. 68 - 70]

	Products of Interest [pp. 71 - 77]
	Back Matter [pp. 78 - 78]

