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Introduction 

Since the 1960s, electronic components that make 
up digital systems have been packaged as tiny inte- 
grated circuits (ICs) or chips. There has been steady 
progress since that time in making the components 
smaller and thereby packing more components per 
chip. This has led to several generations of IC de- 
vices, from small-scale integration (SSI), with only a 
couple of components per chip, to medium-scale 
integration (MSI) and large-scale integration (LSI), 
with tens of thousands of components per chip 
(Myers 1980). As a result of improvements in the 
technology of chip fabrication, achievable circuit 
densities continue to grow higher. The present level 
of density extends into very-large-scale integration 
(VLSI). 

The Present State of the Art 

New digital sound processor technologies are made 
possible by the introduction of VLSI technology. In 
a recent survey of integrated circuits and signal pro- 
cessing, Hoff (1980) points out the increasing com- 
plexity that is coming with the introduction of 
VLSI technology. At the present time, chips like the 
Motorola MC68000, a 16-bit microprocessor with 
68,000 transistors, are at the upper limit of today's 
mass production (Fig. 1). As the size of circuit fea- 
tures decreases more in the next few years, one can 
expect to see dramatic increases in chip density and 
functional capacity. Some estimates place as many 
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as one million logic gates per chip by 1990 (each 
logic gate may comprise several transistors). 

There are five principal limitations in VLSI de- 
sign: chip size, device density, circuit speed, com- 
plexity of device interconnects on the chip, and 
number of pinouts (the number of pins emanating 
from a chip's package). When designing a VLSI 
sound processor, one must consider various trade- 
offs. For example, one can conserve on the number 
of pins used by adding multiplexers to the chip, al- 
lowing any one pin to be used for more than one 
purpose. The demands of real-time computation 
put an extra burden on digital processors. For such 
real-time processors, duplication of chip circuitry 
can increase the speed of signal-processing al- 
gorithms at the cost of additional "real estate" on 
the chip being dedicated to the parallel circuits. 

Current Sound Processors 

I began my research into VLSI and digital sound 
processors by considering existing processors im- 
plemented using MSI technology. The 4B Machine 
at the Institut de Recherche et Coordination Acous- 
tique/Musique (IRCAM) (Alles 1976; 1980) and the 
Systems Concepts Digital Synthesizer (Samson 
1980) were examined for ideas usable in a VLSI 
implementation. 

The 4B is a multiplexed machine, that is, it runs 
fast enough to compute a number of voices of 
sound in the time between sample periods. Trans- 
lating this machine into a single chip would not be 
a terribly difficult job. The machine does have a 
problem, however. When generating line segments 
for functions (e.g., envelope curves) the 4B allows 
timer interrupts to be set for the endpoints of the 
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Fig. 1. The MC68000 mi- 
croprocessor chip. (Photo- 
graph supplied by courtesy 
of Motorola Semiconduc- 
ter, Austin, Texas.) 

line segments. This can put a considerable load on 
the host processor, which is feeding parameters 
from the score to the 4B to control the sound syn- 
thesis. In the case of the 4B the host computer is 
a slow LSI-11. The LSI-11 is constantly being in- 
terrupted and asked to supply more data; this is 
known as the parameter-update problem. 

The Systems Concepts Digital Synthesizer is a 
large, pipelined processor built using MSI technol- 
ogy. It has 256 generators, 128 modifiers, and a mix- 
ing memory called sum memory. Unfortunately, 
the machine appears to be designed mainly for fre- 
quency modulation (FM) and additive synthesis, 
rather than as a truly general-purpose synthesizer. 
Attempts to use the machine for synthesis tech- 
niques other than additive and FM synthesis are 
sometimes successful, but implementation is 
somewhat contrived. As a stream processor, the 
Systems Concepts synthesizer has another prob- 
lem. Commands to the synthesizer are read from 
memory and executed until a command is given to 

stop temporarily and allow processing of sound to 
take place. The problem arises when one must inte- 
grate a command stream that comes from diverse 
input sources such as knobs and keyboards being 
played by musicians. This real-time input problem 
must be solved if such processors are to be used in 
live performance. Designers of digital sound pro- 
cessors will face other problems that will come up 
as the designs become more refined. 

Current Algorithms 

As more processing power becomes available on 
each chip and as the complexity of what musicians 
want to accomplish with such chips increases, it 
becomes necessary to think about processors dif- 
ferently. Commonly used signal-processing al- 
gorithms can be committed to firmware, thus 
simplifying the software environment considerably. 
Rather than consider, What algorithms can I imple- 
ment using this beast? the chip designer must con- 
sider, What algorithms should I implement in 
silicon? Therefore, the designer of any new digital 
sound processor must consider what algorithms the 
user wants to implement. These might include lat- 
tice filtering, convolution, waveshaping, additive 
synthesis, and other algorithms useful for sound 
generation. In the following sections, two VLSI ar- 
chitectures for music processing will be discussed 
that address the issues pointed out so far. 

A Command-Stream Processor 

The purpose of the command-stream processor 
is to solve the real-time input problem. One needs 
to be able to mix many external sources of com- 
mands and data into a single command stream. One 
immediate difficulty is the instability of analog 
components often used in input devices such as 
potentiometers. In particular, the reference levels of 
analog-to-digital converts (ADCs) tend to wander. 
Use of a hysteresis register is one way to solve this 
problem. The contents of this register are compared 
against the current input (which is masked) and 
will match if the masked bits equal the last known 
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Fig. 2. The internal bus is 
a tri-state precharged bus. 
The multiplier and adder 
are latched, allowing oper- 
ations to proceed while 
computations are being 
performed. There is one 
multiplexer that connects 

the coefficient ROM and 
the register bank to the in- 
ternal bus. The output of 
the adder is connected to a 
"breakpoint" detection cir- 
cuit that detects the end- 
points of line segments. 
The time-tick bus is a se- 

rial input connected to a 
global clock. The slot-ad- 
dress bus contains the ad- 
dress broadcast by the slot 
clock. When the slot of the 
chip is recognized by the 
slot recognition logic, one 
byte from the FIFO is put 

onto the central data bus. 
The external world can 
communicate by using the 
latched "world" input. 
This circuit has a "hys- 
teresis" circuit that allows 
for instability in ADCs 
and other inputs. 

ALU and Breakpoint Checking 

Memories 

input. Such a sample can then be ignored. Thus the 
main processor doesn't have to be interrupted for a 
"new" value so often. 

Samples gathered from these input devices 
(knobs, joysticks, etc.) usually must be scaled at 
some point in the processing. The command- 
stream processor can do this for the sound pro- 
cessor if it has its own on-chip multiplier. Then, in 
order to provide linear interpolation between end- 
points of envelope line segments, an adder is also 
available on the command-stream-processor chip. 
The whole processor is controlled by a horizontal 

microprogram store. In such a scheme, a very wide 

(hence horizontal) control word directly controls 
the flow of internal signals within the processor. 
The control words are stored in a microprogram 
read-only-memory (ROM) implemented as a pro- 
grammable logic array (PLA). PLAs are ubiquitous 
in VLSI design (Mead and Conway 1980). Most 
commonly, they are implemented as an array of 
AND/OR gates which the designer can selectively 
connect by changes in the metalization layer. The 
data paths for the command-stream processor are 
shown in Fig. 2. 

In the implementation of the command-stream 
processor, note that the data paths are parallel 
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Fig. 3. This is a layout of 
the command-stream-pro- 
cessor chip without the in- 
put or output pads. The 

area taken up is approx- 
imately 3000 by 4000 
microns. 

Control Bus 

Coefficient Scratchpad Adder 
ROM RAM 
(PLA) 

Internal Bus 
I * - 

8 by 8 Multiplier FIFO 

Control 
ROM 
(PLA) 

rather than serial. Although the space consumed by 
the parallel circuits is larger than serial (Freeny 
[1975] states that parallel multipliers consume four 
times the space of serial multipliers), the payoff is 
speed. Serial circuits can be used effectively in sig- 
nal processors (Jackson, Kaiser, and McDonald 
1967; Lyon 1980), but I felt that the speed to be af- 
forded by parallel design was worth the cost in chip 
space. 

The implementation of this processor will be in 
n-channel metal-oxide semiconductors (NMOS) 
(Mead and Conway 1980). A layout of the chip is 
shown in Fig. 3. 

A Sound Processor 

So far, I have discussed ways to overcome the lim- 
itations in the bandwidth brought about by multi- 
ple, real-time command lists. In this section, I will 
discuss some considerations in the design of the 
signal processor that does the work of musical 
sound generation. 

One can begin by considering exactly what al- 

gorithms will be implemented using the sound pro- 
cessor. This is a synthesis machine, not to be used 
for sound analysis. By and large, the computational 
demands of analysis and synthesis machines differ. 
Analysis algorithms are mostly block algorithms. 
These require an entire array (block) of samples be- 
fore processing can take place. Although such al- 
gorithms are useful, in this article I will not discuss 
processors that implement them. What kinds of 
synthesis algorithms would be implemented? There 
are at least three major techniques: 

1. Additive synthesis. This involves combin- 
ing many relatively simple signals (such as 
sine waves), each with its own frequency 
and amplitude envelopes, to form complex, 
evolving timbres (Moorer 1977). 

2. Subtractive synthesis. This takes a spec- 
trally rich waveform and filters the sound 
down into a less complex timbre (Markel 
and Gray 1976). 

3. Nonlinear synthesis. This involves modu- 
lations of signals with each other (FM, 
waveshaping, etc.) to produce rich, evolving 
timbres (Chowning 1973; LeBrun 1979; Ar- 
fib 1979). 

Additive synthesis, with its individual envelopes for 
each partial of a complex sound, can be computa- 
tionally expensive. Subtractive synthesis tech- 
niques also make substantial demands. This arises, 
for example, in realizing the linear-predictive-cod- 
ing (LPC) synthesis technique, often used for syn- 
thesizing speech sounds (Markel and Gray 1976). In 
the lattice implementation of LPC, a multiplier 
must be provided. In waveshaping, the principal de- 
mand is for a large lookup table and another multi- 
ply. (This table could also be used for artificial 
reverberation.) Clearly, a large lookup table is a nec- 
essary requirement for any synthesis processor. 
Note that the Systems Concepts synthesizer has an 
external memory of 128 Kbytes accessible through 
the modifiers. Although a large memory is desir- 
able, its place is not on the processor chip. It is 
easier to buy the memory chips and put only the 
interface to the memory on the processor chip. 

Many existing signal processors do not have 
branch instructions. This is often due to the com- 
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Fig. 4. In this rather con- 
ventional sound processor, 
notice that all the inputs 
from the common bus are 
latched. This one level of 
pipelining allows the com- 
putation to proceed in par- 

allel throughout the chip. 
Notice also that the off- 
board memory could be 
quite large, which is the 
reason for placing it off the 
chip. External input is 
buffered in the external 

register. Note the bypasses 
on the inputs to the ALU 
and multiplier. This al- 
lows results from the 
common bus to be used 
immediately in the next 
step of computation. 

To External World 

plexity of the machine architecture. This lack of 
branch instructions can prove to be a handicap in 
the implementation of algorithms such as matrix 
inversion or pitch extraction. 

If the signal-processing lessons of the Digital 
Voice Terminal are of any help (Gold 1974), then 

the processor should have as much raw speed as 
possible. Pipelining within the processor is one way 
to achieve this. Multiple computation units that are 
spread across the task (such as found in the IBM 
Model 360/91) are another way to achieve higher 
execution speeds (Tomasulo 1967). 
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In Fig. 4, the data path of a rather ordinary sound 
processor that can be implemented in NMOS is 
given. Notice that the processor has an "outboard" 
memory and an internal multiplier. Once again, the 
processor is microprogrammed. This is more than a 
consideration for user programming of the control 
store. As processors get more complicated, it gets 
more difficult to design the processor to be logically 
correct. Using random logic only exacerbates this 
problem. The MC68000 is an example in which 
microprogramming was used to avoid bugs in the 
control section of the processor (Stritter and Tre- 
dennick 1979). 

Each unit of the processor has latches on the in- 
put and the output so that processing may proceed 
without a wait for the results of a given operation 
(i.e., overlapped execution). The machine is syn- 
chronous, and results are latched when the execu- 
tion unit finishes its action. Notice that the result 
bus can be connected directly to the execution 
units. This allows the current results on the bus to 
"bypass" the latches on the input side of the execu- 
tion units. 

The One-Voice One-Processor Doctrine 

In the processor organizations discussed so far, it 
has been assumed that only one high-speed pro- 
cessor is available. With the advent of low-priced 
processors, lack of processor cycles should not be 
permitted to be a problem. Unfortunately, some of 
the problems of computer networking are then in- 
troduced. If we modify the existing architecture of 
the processor shown in Fig. 1 to have multiple pro- 
cessors, the interconnection of input modules and 
the sound processor modules becomes a problem. 
It's not sufficient just to restrict each sound-pro- 
cessor module to have one input module because 
one might want a single input device to affect many 
processors. A crossbar switch such as is shown in 
Fig. 5 would be ideal. Such a switch was used in 
C.mmp (Wulf and Bell 1972). C.mmp was com- 
posed of slightly modified DEC PDP-11/40 pro- 
cessors augmented with a writable control store. 
Up to 16 of these processors could be connected to 

up to 16 shared memory modules through a 16 by 
16 crosspoint switch (Jones and Schwartz 1980). Of 
course, C.mmp's problem is well known: the num- 
ber of switches increases as the square of the num- 
ber of inputs and the area increases likewise. 

Another solution to the problem is to use a bus 
and grant the bus (arbitrate it). Suppose each of the 
processors is connected in a chain. Then each pro- 
cessor could pass the control token to the next pro- 
cessor when it was finished putting data on the bus. 
But of course then the sound processor must know 
which real-time input placed the data on the bus. 
Therefore, a new bus is needed that buses the pro- 
cessor ID of the input on the data bus. All pro- 
cessors can sample the bus to find out which input 
is there. The problem with this is that each pro- 
cessor must filter out the real-time requests on the 
data bus. This again introduces the parameter-up- 
date problem! 

Other possible bus organizations include a time- 
division multiplexed (TDM) bus or an Ethernet-like 
network where each real-time input has a time slot 
(an address in the Ethernet scheme) and they com- 
municate by broadcasting to the other processor 
(Metcalfe and Boggs 1976). Of course this too has 
its problems-the TDM bus requires that pro- 
cessors wait for the proper time slot. Ethernet was 
designed to be "unreliable" in the sense that it 
keeps retransmitting a message over the network 
until it receives an acknowledgment; it does not as- 
sume the message got through on the first trans- 
mission. Unfortunately, there is no upper bound on 
the time it can take a packet of information to be 
transmitted and received. Because of the basically 
slow rate of change (with respect to the processor) 
involved in parameter update, a TDM-bus scheme 
was used in the command-stream processor. 

Notice that in Fig. 6 a new mixing processor has 
been added to the output of the three sound pro- 
cessors. There must be one mixing processor per 
channel of output sound. With a fast mixing pro- 
cessor, this could be simulated through the use of 
multiplexing, since even at a 50-KHz sampling rate 
for audio, the samples would have to be added at a 
rate of 20 Lsec each, well within the range of the 
processor's speed. 
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Fig. 5. A musical crossbar 
processor (a la C.mmp) 
that allows the command 
stream to be directed to 
any sound processor. The 

problem with the network 
is the second-order nature 
of the connections (N by 
M). 

Command-List 
Processors 

Sound Processors 

Designing the Processor for the Algorithm 
Instead of Vice Versa 

In the design of VLSI processors, a prominent con- 
cern is to design the processor for the algorithm. 
This is based on the belief that processors will de- 
crease in cost, and that by customizing the pro- 
cessor for the algorithm speed can be obtained. An 
example of customizing the processor can be found 
in the work of Kung (1980). Systolic algorithms are 
formed by arrays of processors that communicate 
with their neighbors and form rectilinear arrays. For 
example, Kung has designed second-order filters, a 

convolution box, and a discrete-Fourier-transform 
(DFT) box. A special-purpose reverberation box 
could use a convolution box to implement rever- 
beration using the impulse response of a hall. As 
more research is done into sound-generation al- 
gorithms, perhaps more of them can be placed into 
systolic form. 

Conclusion 

In this article, I have explored a tip of the VLSI 
iceberg. Computer music's high computational re- 
quirements are an ideal problem for VLSI technol- 
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Fig. 6. This figure demon- 
strates the connections of 
the various chips in a 
time-division multiplexed 
system. Notice the addi- 
tion of a score processor, 
which generates com- 

mands that are not depen- 
dent on real-time inputs. 
There is a global clock and 
slot clock, which broad- 
casts the current slot on 
the slot bus. Data is gated 
to the stream bus, which 

then feeds the sound pro- 
cessors. The sound pro- 
cessors in turn feed 
another sound processor 
that acts as a mixer. A 
DAC connects the signal 
back to analog levels. 

Knob Pedal 

Slot 
Clock 

Keyboard 

Clock 
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ogy to solve. Research is required in many areas. 
More research is needed into the structure of al- 

gorithms used by computer musicians, particularly 
the implementation of algorithms that are com- 

putationally expensive. Multiprocessor imple- 
mentation of complex algorithms would be of con- 
siderable interest to VLSI designers. If computer 
musicians engage in a dialogue with VLSI design- 
ers, then profitable results for both sides will surely 
follow. I hope this article will start some of that 

dialogue. 
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