
Gnot Music: A Flexible Workstation for Orchestral Synthesis
Author(s): Mark Kahrs and Tom Killian
Source: Computer Music Journal, Vol. 16, No. 3 (Autumn, 1992), pp. 48-56
Published by: The MIT Press
Stable URL: http://www.jstor.org/stable/3680850
Accessed: 19/03/2009 15:52

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=mitpress.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

The MIT Press is collaborating with JSTOR to digitize, preserve and extend access to Computer Music
Journal.

http://www.jstor.org

http://www.jstor.org/stable/3680850?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=mitpress

Mark Kahrs* and Tom Killiant
*Department of Electrical and Computer Engineering
Rutgers University
P. 0. Box 909
Piscataway, New Jersey 08855 USA
kahrs@winlab. rutgers.edu

Gnot Music: A Flexible

Workstation for

Orchestral Synthesis
tAT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, New Jersey 07974 USA
tom@research.att.com

Existing electronic instruments have a number of
difficulties. We have identified three problems that
we believe can be solved. First, although versatile,
the MIDI protocol (Loy 1985) is too slow to permit
rapid changing of instrument parameters. This is a
direct result of MIDI's design-it was really designed
as a gestural language and not a language to transmit
large amounts of data such as envelope parameters. It
is too slow to control many instruments simulta-
neously without running into synchronization prob-
lems. (For a full description of the problems with
MIDI, see Moore 1988.)

Second, algorithmic (as opposed to sampling) syn-
thesis is useful because it provides a parameter space
that may be explored for creative effects. Frequency
modulation (FM) algorithms (Chowning 1973) in par-
ticular yield sounds with rich spectra for relatively
few arithmetic operations. Currently, the largest
commercially available FM synthesis capability is
that of the Yamaha TX-816 synthesizer. This device
has eight identical modules, each with the capability
of a Yamaha DX-7. Access to parameters is slow (via
eight separate MIDI streams), and only a fixed set of
operator connection topologies is available. As a re-
sult, "orchestral" synthesis is not truly possible; it is
difficult to layer enough timbres without running
into bandwidth difficulties due to MIDI limitations.
(This is particularly true if the eight MIDI streams
are demultiplexed from a single source.) The TX-816
has another limitation-it provides only analog out-
puts; these must in turn be mixed together with an
analog mixer, thereby providing extra opportunities
for noise and programming complexity.

Computer Music Journal, Vol. 16, No. 3, Fall 1992,
? 1992 Massachusetts Institute of Technology.

Finally, most signal processing is done by separate
"effects boxes" after the sound is generated. This
eliminates possible feedback between the signal pro-
cessing and the audio output, except through the
slow MIDI channel. It also requires extraneous digi-
tal-to-analog (D/A) and analog-to-digital (A/D) con-
versions that reduce the sound quality and add to the
expense of the system.

The Gnot Music Workstation

The gnusic (Gnot music) project was created to over-
come these difficulties. It is based on an experimen-
tal diskless workstation (the "Gnot," the name is not
significant), featuring a Motorola MC68020 proces-
sor, a bitmapped gray-level display, and an interface
to a 1.5 Mbit local area network. The Gnot was de-
veloped as part of a grand experiment in distributed
computing using high-quality terminals connected to
distributed file and compute servers over local area
networks (Pike et al. 1990). We have been developing
an experimental machine for sound synthesis based
on using the Gnot machine as a real-time controller.
Our principal purpose was to explore the notion of
"orchestral" synthesis; that is, the real-time synthe-
sis of large numbers of instruments comparable to
that found in a moder orchestra.

In our system, instruments are controlled over a
high-speed bus by a fast processor, sound samples
may be produced by fully programmable digital sig-
nal processors (DSPs), and mixing and effects pro-
cessing are integrated by using the same DSP for
both functions. The output is an AES/EBU (Audio
Engineering Society 1985) digital audio stream that

Computer Music Journal 48

Fig. 1. The basic gnusic ma-
chine architecture.

Table 1. Serial I/O cable lines

DI/DO data in/data out

ICK/OCK input/output clock

ILD/OLD input/output load clock

IBF input buffer full

OSE output shift-register empty
SADD serial address (for TDMA mode)

can be fed directly to a compact disk mastering re-
corder or to D/A converters.

The processor (housed in the display base of the
Gnot) has direct access to the computational resources
of instrument cards over an 8-bit bus. The 8-bit bus is
a limitation of the Gnot design; it is an extension of
the MC68020's bus. Another implementation could
have a wider bus with the accompanying increase in
bus bandwidth. The bus is distributed over a back-
plane to the various cards; these cards can perform any
number of functions depending on the card. The archi-
tecture of the basic machine is shown in Fig. 1.

To begin with, the 8-bit data bus and associated
control signals are delivered to a control card at one
end of the backplane. These signals arrive from the
Gnot via a flat ribbon cable. The control card per-
forms simple decoding tasks and buffers the signals
onto the backplane. It also contains a SCSI interface
for a disk for use when a local area network with a
file server is not readily available. There are several
different kinds of input/output cards. There is a
SMPTE/MIDI card for interfacing to videotape re-
corders and keyboards, respectively. There are three
different kinds of sound generation ("instrument")
cards: a DSP-16 array, an FM array, and the "final
mix" card. Each instrument card has an AT&T DSP-
16 digital signal processor (AT&T 1987) for mixing
the digital outputs. This processor must (a) mix the
output from the card "upstream" with the sample
generated locally, and (b) perform any effects desired
with the leftover time. Such effects might include fil-
tering or feedback control of the oscillators. The ba-
sic core includes a pseudo-dual-port static program
memory for the DSP-16. Because the DSP-16 is so
fast (80 nsec cycle time; the DSP-16A is even faster,

LR

BCK

YCK

SYNC

left/right clock

bit clock (32 * 44.1 kHz)

Yamaha clock

frame synchronization

with a 50 nsec cycle time), memory access must be
shared between the 8-bit processor bus and DSP;
when the processor sets the DSP to "run," it also
prevents itself from accessing the memory.

The "final mix" card is last in the chain; it does
the sample rate conversion from the Yamaha sample
rate (58.8 kHz) to AES/EBU rate (44.1 kHz). The card
also contains an AES/EBU converter attached to the
serial port of the DSP-16.

The DSP-16 includes both a parallel and a serial I/
O port. Each side of the serial I/O port has a shift reg-
ister attached to the internal data bus of the DSP-16.
The input buffer full (IBF) and output shift register
empty (OSE) bits are available to external interfaces.
The chip also provides load clocks for the shift regis-
ters and frame synchronization. The DSP-16 can be
either a master (called "active" in DSP-16 terminol-
ogy) or a slave ("passive"). We put all the DSP-16s ex-
cept the final mix DSP in passive mode. They are fed
clocks from the final mix DSP. This guarantees that
all DSPs use the same output clock. The final mix
card generates the left/right clock so that the chan-
nels are synchronized as well; that is, all core DSPs
start out on the same foot. The serial data output of
the DSP-16 is fed to the serial data input of the next
DSP-16 in line. All of the serial I/O is done via flat
ribbon cables on the end of the cards (we use a 26-
conductor cable with alternating grounds). The sig-
nals transmitted over the cable are listed in Table 1.

Kahrs and Killian 49

Fig. 2. The core DSP archi-
tecture.

gnot bus
~ * to other

DSP-16 run control devices
static memory register

serial seri 1 pal6 rlel parallel
connector port port data bus

DI and DO are the serial data bits; ICK and OCK
are the shift register bit clocks, and ILD and OLD are
the shift register word clocks. IBF and OSE can be
used for flow control. SADD is the serial processor
address, and SYNC is the frame synchronizers; these
signals are not currently used. LR distinguishes be-
tween the left and right channels. BCK is the bit
clock for the serial interface, and YCK is the Yamaha
serial bit clock. They are different because changing
the Yamaha clock from its specification would result
in lower pitch values, thereby reducing the useful
range of the FM instruments.

The Final Mix Card

Fig. 3. FM array block dia-
gram.

16*

The final mix card has the basic ("core") DSP-16 cir-
cuitry found on all instrument cards. A block dia-
gram of it can be found in Fig. 2.

The Gnot can write into the memory of the DSP-
16, but only when the DSP-16 is stopped. The DSP-
16 is too fast to allow true dual-port memory access.
This is perfectly acceptable since the core program
typically does not change when the synthesizer is
running. The Gnot can also set a DSP-16 control reg-
ister that contains the run flag and other useful bits.

The FM Array Card

Our FM instrument card uses 16 Yamaha YM-2151
oscillator integrated circuits. This chip is approxi-
mately the same as the chip used in the Yamaha FB-
01 synthesizer. The YM-2151 is an eight-voice,

four-oscillator chip with on-chip envelope genera-
tors. The card is organized as shown in Fig. 3, the
layout of the card is shown in Fig. 4a, and a photo-
graph of it in Fig. 4b.

Note how the core DSP circuitry integrates into
the card; the core DSP provides a mechanism to col-
lect samples from all the FM chips as well as scaling
and possible signal processing hacks inside the DSP.
Since the output of the Yamaha chips is in 13-bit
pseudo "floating-point" format (10 bits of mantissa,
3 bits of binary exponent), it must be converted to
linear 16-bit format for use by the DSP-16. A barrel
shifter accomplishes this, although it is "overkill"
for the application. The output of the barrel shifter is
put on the parallel input bus of the DSP-16. An auto-
incremented address register is decoded and selects
which FM chip is driving the shifter input bus.

Computer Music Journal 50

Fig. 4. FM array circuit
board layout (a) and pho-
tograph of the FM array cir-
cuit board (b).

serial
input
connector

serial
output
connector

gnot
bus
connector

mtrol logic

Meanwhile, the serial output of the previous card is
fed to the serial input of the DSP-16, which is mixed
with the sum of the barrel shifter outputs (computed
by the DSP-16). The final result is put in the serial
output register, which is then shifted out on the se-
rial output pin, which goes to the next card in the
chain.

The Gnot programs the Yamaha chips one at a
time by setting a chip-select register and then writ-
ing data to the on-chip registers. The YM-2151 is
fairly slow; a bus cycle takes about 500 nsec, and in-
curs 12 gisec of dead time (i.e., the chip is busy during
this time). It takes 10 bytes to reset a channel (i.e.,
gracefully bring its output to zero), 38 bytes to con-
figure a new instrument (voice), and an additional 22
bytes to sound a note, so the worst-case reload time
is about 850 gsec. Data intended for different chips
may be interleaved (at the expense of more writes to

Fig. 4a

Fig. 4b

Kahrs and Killian 51

Fig. 5. DSP-16 array block
diagram.

the chip-select register), so most of the dead time can
be recovered when things are busy. The equivalent
FB-01 system exclusive MIDI message is 139 bytes
long, requiring 44 msec for transmission (a ratio of
about 50:1).

Unfortunately, the voices for the YM-2151 do not
sound as good as the voices for the DX-7, the well-
known Yamaha product with a six-oscillator FM al-
gorithm, nor is there available anything comparable
to the enormous library of DX-7 instruments. There
are fewer oscillators per voice on the FB-01 (four os-
cillators per "algorithm" versus six), and their enve-
lopes are more restricted. Of the 32 DX-7 algorithms,
25 can be simulated (ignoring the problem of con-
verting the envelopes from DX-7 format to FB-01 for-
mat), using a set of YM-2151 channels. It is
interesting that the remaining seven algorithms (for
aficionados, numbers 4, 6, 12, 13, 16, 17, and 18) are
commonly used in our favorite DX-7 voices. In spite
of all this, the YM-2151 provided a reasonable way to
get a fair number of instruments in a short period of
time.

Note that each Yamaha chip has 32 oscillators (16
FM oscillators counting 2 oscillators per FM pair);
therefore each board provides 512 total oscillators.
By comparison, the 4B (Alles and Giugno 1977) de-
veloped at IRCAM provides a total of 64 oscillators
per card using totally medium-scale integration
logic.

DSP-16 Array Card

The DSP-16 array card has four DSP-16s and a core
DSP. A block diagram of the card is shown in Fig. 5.
The layout of the card is shown in Fig. 6a, and a pho-
tograph of it in Fig. 6b.

The core DSP addresses the four satellite DSPs via
the 16-bit wide parallel I/O bus. The core can address
any of the satellites and also a 64 kiloword external
memory. This is specifically designed for reverbera-
tion (64k is about 1.5 sec at the 44.1 kHz sampling
rate). The serial I/O ports of the satellites are con-
nected in a ring using the on-chip logic of the DSP-
16. The DSP- 16 multiprocessor interface permits up
to eight processors to be connected on a serial bus.
Slots must be reserved (i.e., statically allocated) be-
forehand, as there is no contention mechanism. Fur-
thermore, each processor must have a unique
address.

The Gnot has the same interface to the memory of
the satellites as it does to the core. It also has a 2
kbyte FIFO buffer attached to the parallel I/O bus of
the core for use in parameter-passing from the host.
Status bits from the FIFO buffer can be used to inter-
rupt the core DSP should the FIFO become too full
and risk data overrun.

The slave DSPs are for general algorithmic synthe-
sis and DSP algorithms (including pitch detection
and various filtering algorithms). They are fast
enough to compete with specialized VLSI solutions
for additive and FM methods.

SMPTE/MIDI Card

The SMPTE/MIDI card does not have and does not
need a core DSP section. It provides a simple inter-
face to the SMPTE time code (via the Otari 10055
chip) so that the synthesizer can be set to operate as
a slave to a videotape machine. The MIDI channel is
formed around the Yamaha YM-3802 MIDI Control-
ler chip. While providing almost too much of every-
thing, it does provide a way to accept keyboard input
from a keyboard controller such as a Yamaha KX-88
(or even a DX-7). A block diagram of this simple card
is shown in Fig. 7; its layout is shown in Fig. 8a, and
a photograph of it in Fig. 8b.

Computer Music Journal 52

Fig. 6. DSP-16 array circuit
board layout (a) and photo-
graph of the DSP-16 array
circuit board (b).

j
serial
input
connector

serial
output
connector

Fig. 7. SMPTE/MIDI inter-
face block diagram.

gnot
bus
connector

Fig. 6a

out in
MIDI

ig. 6SMPTE in

Kahrs and Killian

____ _._ _. . _ __

U

Fig. 8. SMPTE/MIDI inter-
face circuit board layout
(a) and photograph of the
SMPTE/MIDI interface cir-
cuit board (b).

_s hSd

b"W

-S

T
Fig. 8a

AES Converter

The final mix card cohabitates with an AES/EBU re-
ceiver and transmitter. This uses the (in)famous
Sony CX-23053 and CX-23033 chips. The Yamaha
sample rate (58.8 kHz) is converted to 44.1 kHz by
interpolation and decimation by a ratio of 3:4. The
output of the core is connected (via the standard se-
rial flat ribbon cable) to the AES transmitter section.
Likewise, the AES receiver section can be connected
to the serial input of the core DSP of the final mix
card.

Software Details

The Plan 9 system is organired around distributed
file systems and CPU servers (typically multiproces-
sors). Computing is not done on local workstations
(such as the Gnot) in this network; instead is it per-
formed on fast, hot, and noisy machines located in

air-conditioned rooms. Likewise, the file servers are
not located adjacent to the workstation; they also are
placed in climate-controlled environments. The file
and CPU servers are interconnected via a variety of
high-speed networks; the terminal workstations are
connected via a medium-speed network (throughput
is about 120 kbytes/sec).

The Low-Level Interface

The different DSP cards on the Gnot bus are pro-
grammed through a uniform interface. The memory
of each core DSP looks like the UNIX system's
memory device Idev/mem, that is, it can be'ad-
dressed, read, and written via system calls. The
Yamaha card interface looks like a continuous string
of oscillators; the oscillators are programmed by
writing a [address, value] pair to the internal registers

Computer Music Journal

bP
I=lm~to

Fig. 8b

__ _ _____.____ ___._

84

of the YM-2151 chip. Above the devices (in the soft-
ware sense) is a real-time scheduler that uses Plan 9
streams (Presotto 1990). Streams are a way of insert-
ing coroutines (called "line disciplines") between
low-level drivers and high-level code. The real-time
line discipline is responsible for picking the next
time-tagged event out of the input queue and execut-
ing it (i.e., reading or writing the appropriate regis-
ter). The effect of the real-time scheduler is invisible
to the higher-level users, as it should be.

The programs for the DSP-16 are written in assem-
bly language and cross-compiled on a CPU server.
The peculiar nature of the DSP-16 register set makes
it very difficult to write a code generator for a higher-
level language such as C. The resulting object files
can be downloaded from the Gnot via the mecha-
nism described above.

The High-Level Interface

Our first cut at a "music" interface is a MIDI file in-
terpreter that builds on an existing score compiler
(Killian 1986; Kahrs, Killian, and Mathews 1986)
called m; which m was named in 1985, long before
M (Zicarelli 1987) appeared. Compiler m accepts an
ASCII representation of common music notation and
generates a stream of MIDI events; these events are
interpreted and translated by the play program.
Notes are assigned to one of the 128 channels on an
oscillator card in a strict least-recently-used fashion.
Thus, each note-on event potentially causes a full
voice load, but we can guarantee full sonority to a
timbre with a long decay time because the large
number of available oscillators makes it unlikely the
oscillator will have to be used again for a long time.

Conclusions

Gnusic has been tested using a complicated move-
ment from Stravinsky's Le Sacre du Printemps, but
no contemporary use has been made to date.

The Gnusic organization offers potentially more
oscillators than any other synthesizer available at
present. However, the limited nature of the Yamaha
YM-2151 chips precludes truly general use of the os-

cillators. One possible use is additive synthesis-us-
ing the "algorithm" that just adds together multiple
oscillators, the outputs of the Yamaha oscillators can
be added together (as usual) by the core DSP.

Eventually, the parameter update problem (Moorer
1981) will "bite" back at Gnusic too. As the number
of active oscillators increases, the need to update pa-
rameters will increase as well. This problem will re-
main for the foreseeable future. Wider and faster
process or buses will address this problem some-
what.

Although blazingly fast, the unusual nature of the
DSP-16 register set makes coding an unpleasant task.
One can also argue that floating-point numbers
would be a better representation for use in signal pro-
cessors. When Gnusic was designed, the DSP-32 was
not fast enough to handle the mixing task. Any new
version would use a fast floating-point chip (like the
DSP-32C) with a C compiler.

Gnusic was created to implement various ideas in
orchestral synthesis and signal processing that are
difficult to try in MIDI systems. The coexistence of a
powerful workstation and a flexible combination of
versatile instrument I/O cards makes such experi-
mentation possible.

References

Audio Engineering Society. 1985. "Serial Transmission
Format for Linearly Represented Digital Audio Data."
Journal of the Audio Engineering Society 33(10):976-
984.

AT&T. 1987. WE DSP-16 Digital Signal Processor
Information Manual. Murray Hill, New Jersey: AT&T.

Alles, H. G., and G. D. Giugno. 1977. "The 4B: A One-
Card 64-Channel Digital Synthesizer." Computer Music
Journal 1(4):7-9. Reprinted in C. Roads and J. Strawn,
eds. 1985. Foundations of Computer Music. Cambridge,
Massachusetts: MIT Press, pp. 250-256.

Chowning, J. M. 1973. "The Synthesis of Complex Audio
Spectra by Means of Frequency Modulation." Journal of
the Audio Engineering Society 21(7):526-534. Reprinted
in Computer Music Journal 1(2): 46-54, and in C. Roads
and J. Strawn, eds. 1985. Foundations of Computer
Music. Cambridge, Massachusetts: MIT Press, pp. 6-29.

Kahrs, M., T. J. Killian, and M. V. Mathews. 1986.
"Computer Music Research at Bell Labs." In
Proceedings of the International Computer Music

Kahrs and Killian 55

Conference. San Francisco: International Computer
Music Association pp. 199-201.

Killian, T. J. 1986. "Computer Music under Unix Eighth
Edition." In Proceedings of the European Unix Systems
User Group (EUUG) Spring Conference Cambridge,
UK: EUUG.

Loy, G. 1985. "Musicians Make a Standard: The MIDI
Phenomenon." Computer Music Journal 9(4): 8-26.
Reprinted in C. Roads, ed. 1989. The Music Machine.
Cambridge, Massachusetts: MIT Press, pp. 181-198.

Moore, F. R. 1988. "The Dysfunctions of MIDI."
Computer Music Journal 12(1):19-28.

Moorer, J. A. 1981. "Synthesizers I Have Known and

Loved." Computer Music Journal 5(1): 4-12. Reprinted
in C. Roads, ed. 1989. The Music Machine. Cambridge,
Massachusetts: MIT Press, pp. 589-598

Pike, R., D. Presotto, K. Thompson, and H. Trickey. 1990.
"Plan 9 from Bell Labs." In Proceedings of the Summer
1990 UK UNIX User's Group Conference. Cambridge,
UK: EUUG. pp. 1-10.

Presotto, D. L. 1990. "Multiprocessor Streams for Plan 9."
In Proceedings of the Summer 1990 UK UNIX User's
Group Conference. Cambridge, UK: EUUG. pp.11-19.

Zicarelli, D. 1987. "M and Jam Factory." Computer Music
Journal 11(4): 13-29.

Computer Music Journal 56

	Article Contents
	p. 48
	p. 49
	p. 50
	p. 51
	p. 52
	p. 53
	p. 54
	p. 55
	p. 56

	Issue Table of Contents
	Computer Music Journal, Vol. 16, No. 3 (Autumn, 1992), pp. 1-110
	Front Matter [pp. 1 - 2]
	About This Issue [p. 3]
	Errata to Holm and Holm [p. 3]
	Editor's Notes: Performing with Active Instruments [p. 4]
	Letters
	Performing with Active Instruments [pp. 5 - 6]
	Time Functions [pp. 7 - 8]

	Announcements [pp. 8 - 12]
	News [pp. 13 - 16]
	Machine Songs III: Music in the Service of Science-Science in the Service of Music [pp. 17 - 21]
	Score/Music Orientation: An Interview with Robert Rowe [pp. 22 - 32]
	Chaotic Systems as Simple (But Complex) Compositional Algorithms [pp. 33 - 47]
	Gnot Music: A Flexible Workstation for Orchestral Synthesis [pp. 48 - 56]
	A MIDI/DSP Sound Processing Environment for a Computer Music Workstation [pp. 57 - 72]
	The Interim DynaPiano: An Integrated Computer Tool and Instrument for Composers [pp. 73 - 91]
	Reviews
	Performances, Exhibitions, and Conferences
	CyberArts International [pp. 92 - 96]
	Music Publishing and Music Representation in the Technological Age: A Symposium [pp. 96 - 98]
	ROBOARD-pf-estival [pp. 98 - 100]
	Seminar on Pedagogy and Computing in Music [pp. 100 - 101]
	The National Association of Music Merchants (NAMM) Convention, January 1992 [pp. 101 - 103]

	Recordings
	untitled [pp. 103 - 104]
	untitled [pp. 104 - 105]

	Products of Interest: Product Announcements [pp. 106 - 109]
	Back Matter [pp. 110 - 110]

