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Existing electronic instruments have a number of 
difficulties. We have identified three problems that 
we believe can be solved. First, although versatile, 
the MIDI protocol (Loy 1985) is too slow to permit 
rapid changing of instrument parameters. This is a 
direct result of MIDI's design-it was really designed 
as a gestural language and not a language to transmit 
large amounts of data such as envelope parameters. It 
is too slow to control many instruments simulta- 
neously without running into synchronization prob- 
lems. (For a full description of the problems with 
MIDI, see Moore 1988.) 

Second, algorithmic (as opposed to sampling) syn- 
thesis is useful because it provides a parameter space 
that may be explored for creative effects. Frequency 
modulation (FM) algorithms (Chowning 1973) in par- 
ticular yield sounds with rich spectra for relatively 
few arithmetic operations. Currently, the largest 
commercially available FM synthesis capability is 
that of the Yamaha TX-816 synthesizer. This device 
has eight identical modules, each with the capability 
of a Yamaha DX-7. Access to parameters is slow (via 
eight separate MIDI streams), and only a fixed set of 
operator connection topologies is available. As a re- 
sult, "orchestral" synthesis is not truly possible; it is 
difficult to layer enough timbres without running 
into bandwidth difficulties due to MIDI limitations. 
(This is particularly true if the eight MIDI streams 
are demultiplexed from a single source.) The TX-816 
has another limitation-it provides only analog out- 
puts; these must in turn be mixed together with an 
analog mixer, thereby providing extra opportunities 
for noise and programming complexity. 
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Finally, most signal processing is done by separate 
"effects boxes" after the sound is generated. This 
eliminates possible feedback between the signal pro- 
cessing and the audio output, except through the 
slow MIDI channel. It also requires extraneous digi- 
tal-to-analog (D/A) and analog-to-digital (A/D) con- 
versions that reduce the sound quality and add to the 
expense of the system. 

The Gnot Music Workstation 

The gnusic (Gnot music) project was created to over- 
come these difficulties. It is based on an experimen- 
tal diskless workstation (the "Gnot," the name is not 
significant), featuring a Motorola MC68020 proces- 
sor, a bitmapped gray-level display, and an interface 
to a 1.5 Mbit local area network. The Gnot was de- 
veloped as part of a grand experiment in distributed 
computing using high-quality terminals connected to 
distributed file and compute servers over local area 
networks (Pike et al. 1990). We have been developing 
an experimental machine for sound synthesis based 
on using the Gnot machine as a real-time controller. 
Our principal purpose was to explore the notion of 
"orchestral" synthesis; that is, the real-time synthe- 
sis of large numbers of instruments comparable to 
that found in a moder orchestra. 

In our system, instruments are controlled over a 
high-speed bus by a fast processor, sound samples 
may be produced by fully programmable digital sig- 
nal processors (DSPs), and mixing and effects pro- 
cessing are integrated by using the same DSP for 
both functions. The output is an AES/EBU (Audio 
Engineering Society 1985) digital audio stream that 
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Fig. 1. The basic gnusic ma- 
chine architecture. 

Table 1. Serial I/O cable lines 

DI/DO data in/data out 

ICK/OCK input/output clock 

ILD/OLD input/output load clock 

IBF input buffer full 

OSE output shift-register empty 
SADD serial address (for TDMA mode) 

can be fed directly to a compact disk mastering re- 
corder or to D/A converters. 

The processor (housed in the display base of the 
Gnot) has direct access to the computational resources 
of instrument cards over an 8-bit bus. The 8-bit bus is 
a limitation of the Gnot design; it is an extension of 
the MC68020's bus. Another implementation could 
have a wider bus with the accompanying increase in 
bus bandwidth. The bus is distributed over a back- 
plane to the various cards; these cards can perform any 
number of functions depending on the card. The archi- 
tecture of the basic machine is shown in Fig. 1. 

To begin with, the 8-bit data bus and associated 
control signals are delivered to a control card at one 
end of the backplane. These signals arrive from the 
Gnot via a flat ribbon cable. The control card per- 
forms simple decoding tasks and buffers the signals 
onto the backplane. It also contains a SCSI interface 
for a disk for use when a local area network with a 
file server is not readily available. There are several 
different kinds of input/output cards. There is a 
SMPTE/MIDI card for interfacing to videotape re- 
corders and keyboards, respectively. There are three 
different kinds of sound generation ("instrument") 
cards: a DSP-16 array, an FM array, and the "final 
mix" card. Each instrument card has an AT&T DSP- 
16 digital signal processor (AT&T 1987) for mixing 
the digital outputs. This processor must (a) mix the 
output from the card "upstream" with the sample 
generated locally, and (b) perform any effects desired 
with the leftover time. Such effects might include fil- 
tering or feedback control of the oscillators. The ba- 
sic core includes a pseudo-dual-port static program 
memory for the DSP-16. Because the DSP-16 is so 
fast (80 nsec cycle time; the DSP-16A is even faster, 

LR 

BCK 

YCK 

SYNC 

left/right clock 

bit clock (32 * 44.1 kHz) 

Yamaha clock 

frame synchronization 

with a 50 nsec cycle time), memory access must be 
shared between the 8-bit processor bus and DSP; 
when the processor sets the DSP to "run," it also 
prevents itself from accessing the memory. 

The "final mix" card is last in the chain; it does 
the sample rate conversion from the Yamaha sample 
rate (58.8 kHz) to AES/EBU rate (44.1 kHz). The card 
also contains an AES/EBU converter attached to the 
serial port of the DSP-16. 

The DSP-16 includes both a parallel and a serial I/ 
O port. Each side of the serial I/O port has a shift reg- 
ister attached to the internal data bus of the DSP-16. 
The input buffer full (IBF) and output shift register 
empty (OSE) bits are available to external interfaces. 
The chip also provides load clocks for the shift regis- 
ters and frame synchronization. The DSP-16 can be 
either a master (called "active" in DSP-16 terminol- 
ogy) or a slave ("passive"). We put all the DSP-16s ex- 
cept the final mix DSP in passive mode. They are fed 
clocks from the final mix DSP. This guarantees that 
all DSPs use the same output clock. The final mix 
card generates the left/right clock so that the chan- 
nels are synchronized as well; that is, all core DSPs 
start out on the same foot. The serial data output of 
the DSP-16 is fed to the serial data input of the next 
DSP-16 in line. All of the serial I/O is done via flat 
ribbon cables on the end of the cards (we use a 26- 
conductor cable with alternating grounds). The sig- 
nals transmitted over the cable are listed in Table 1. 
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Fig. 2. The core DSP archi- 
tecture. 

gnot bus 
~ * to other 

DSP-16 run control devices 
static memory register 

serial seri 1 pal6 rlel parallel 
connector port port data bus 

DI and DO are the serial data bits; ICK and OCK 
are the shift register bit clocks, and ILD and OLD are 
the shift register word clocks. IBF and OSE can be 
used for flow control. SADD is the serial processor 
address, and SYNC is the frame synchronizers; these 
signals are not currently used. LR distinguishes be- 
tween the left and right channels. BCK is the bit 
clock for the serial interface, and YCK is the Yamaha 
serial bit clock. They are different because changing 
the Yamaha clock from its specification would result 
in lower pitch values, thereby reducing the useful 
range of the FM instruments. 

The Final Mix Card 

Fig. 3. FM array block dia- 
gram. 

16* 

The final mix card has the basic ("core") DSP-16 cir- 
cuitry found on all instrument cards. A block dia- 
gram of it can be found in Fig. 2. 

The Gnot can write into the memory of the DSP- 
16, but only when the DSP-16 is stopped. The DSP- 
16 is too fast to allow true dual-port memory access. 
This is perfectly acceptable since the core program 
typically does not change when the synthesizer is 
running. The Gnot can also set a DSP-16 control reg- 
ister that contains the run flag and other useful bits. 

The FM Array Card 

Our FM instrument card uses 16 Yamaha YM-2151 
oscillator integrated circuits. This chip is approxi- 
mately the same as the chip used in the Yamaha FB- 
01 synthesizer. The YM-2151 is an eight-voice, 

four-oscillator chip with on-chip envelope genera- 
tors. The card is organized as shown in Fig. 3, the 
layout of the card is shown in Fig. 4a, and a photo- 
graph of it in Fig. 4b. 

Note how the core DSP circuitry integrates into 
the card; the core DSP provides a mechanism to col- 
lect samples from all the FM chips as well as scaling 
and possible signal processing hacks inside the DSP. 
Since the output of the Yamaha chips is in 13-bit 
pseudo "floating-point" format (10 bits of mantissa, 
3 bits of binary exponent), it must be converted to 
linear 16-bit format for use by the DSP-16. A barrel 
shifter accomplishes this, although it is "overkill" 
for the application. The output of the barrel shifter is 
put on the parallel input bus of the DSP-16. An auto- 
incremented address register is decoded and selects 
which FM chip is driving the shifter input bus. 
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Fig. 4. FM array circuit 
board layout (a) and pho- 
tograph of the FM array cir- 
cuit board (b). 
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Meanwhile, the serial output of the previous card is 
fed to the serial input of the DSP-16, which is mixed 
with the sum of the barrel shifter outputs (computed 
by the DSP-16). The final result is put in the serial 
output register, which is then shifted out on the se- 
rial output pin, which goes to the next card in the 
chain. 

The Gnot programs the Yamaha chips one at a 
time by setting a chip-select register and then writ- 
ing data to the on-chip registers. The YM-2151 is 
fairly slow; a bus cycle takes about 500 nsec, and in- 
curs 12 gisec of dead time (i.e., the chip is busy during 
this time ). It takes 10 bytes to reset a channel (i.e., 
gracefully bring its output to zero), 38 bytes to con- 
figure a new instrument (voice), and an additional 22 
bytes to sound a note, so the worst-case reload time 
is about 850 gsec. Data intended for different chips 
may be interleaved (at the expense of more writes to 

Fig. 4a 

Fig. 4b 
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Fig. 5. DSP-16 array block 
diagram. 

the chip-select register), so most of the dead time can 
be recovered when things are busy. The equivalent 
FB-01 system exclusive MIDI message is 139 bytes 
long, requiring 44 msec for transmission (a ratio of 
about 50:1). 

Unfortunately, the voices for the YM-2151 do not 
sound as good as the voices for the DX-7, the well- 
known Yamaha product with a six-oscillator FM al- 
gorithm, nor is there available anything comparable 
to the enormous library of DX-7 instruments. There 
are fewer oscillators per voice on the FB-01 (four os- 
cillators per "algorithm" versus six), and their enve- 
lopes are more restricted. Of the 32 DX-7 algorithms, 
25 can be simulated (ignoring the problem of con- 
verting the envelopes from DX-7 format to FB-01 for- 
mat), using a set of YM-2151 channels. It is 
interesting that the remaining seven algorithms (for 
aficionados, numbers 4, 6, 12, 13, 16, 17, and 18) are 
commonly used in our favorite DX-7 voices. In spite 
of all this, the YM-2151 provided a reasonable way to 
get a fair number of instruments in a short period of 
time. 

Note that each Yamaha chip has 32 oscillators (16 
FM oscillators counting 2 oscillators per FM pair); 
therefore each board provides 512 total oscillators. 
By comparison, the 4B (Alles and Giugno 1977) de- 
veloped at IRCAM provides a total of 64 oscillators 
per card using totally medium-scale integration 
logic. 

DSP-16 Array Card 

The DSP-16 array card has four DSP-16s and a core 
DSP. A block diagram of the card is shown in Fig. 5. 
The layout of the card is shown in Fig. 6a, and a pho- 
tograph of it in Fig. 6b. 

The core DSP addresses the four satellite DSPs via 
the 16-bit wide parallel I/O bus. The core can address 
any of the satellites and also a 64 kiloword external 
memory. This is specifically designed for reverbera- 
tion (64k is about 1.5 sec at the 44.1 kHz sampling 
rate). The serial I/O ports of the satellites are con- 
nected in a ring using the on-chip logic of the DSP- 
16. The DSP- 16 multiprocessor interface permits up 
to eight processors to be connected on a serial bus. 
Slots must be reserved (i.e., statically allocated) be- 
forehand, as there is no contention mechanism. Fur- 
thermore, each processor must have a unique 
address. 

The Gnot has the same interface to the memory of 
the satellites as it does to the core. It also has a 2 
kbyte FIFO buffer attached to the parallel I/O bus of 
the core for use in parameter-passing from the host. 
Status bits from the FIFO buffer can be used to inter- 
rupt the core DSP should the FIFO become too full 
and risk data overrun. 

The slave DSPs are for general algorithmic synthe- 
sis and DSP algorithms (including pitch detection 
and various filtering algorithms). They are fast 
enough to compete with specialized VLSI solutions 
for additive and FM methods. 

SMPTE/MIDI Card 

The SMPTE/MIDI card does not have and does not 
need a core DSP section. It provides a simple inter- 
face to the SMPTE time code (via the Otari 10055 
chip) so that the synthesizer can be set to operate as 
a slave to a videotape machine. The MIDI channel is 
formed around the Yamaha YM-3802 MIDI Control- 
ler chip. While providing almost too much of every- 
thing, it does provide a way to accept keyboard input 
from a keyboard controller such as a Yamaha KX-88 
(or even a DX-7). A block diagram of this simple card 
is shown in Fig. 7; its layout is shown in Fig. 8a, and 
a photograph of it in Fig. 8b. 
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Fig. 6. DSP-16 array circuit 
board layout (a) and photo- 
graph of the DSP-16 array 
circuit board (b). 
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Fig. 7. SMPTE/MIDI inter- 
face block diagram. 
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Fig. 8. SMPTE/MIDI inter- 
face circuit board layout 
(a) and photograph of the 
SMPTE/MIDI interface cir- 
cuit board (b). 
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AES Converter 

The final mix card cohabitates with an AES/EBU re- 
ceiver and transmitter. This uses the (in)famous 
Sony CX-23053 and CX-23033 chips. The Yamaha 
sample rate (58.8 kHz) is converted to 44.1 kHz by 
interpolation and decimation by a ratio of 3:4. The 
output of the core is connected (via the standard se- 
rial flat ribbon cable) to the AES transmitter section. 
Likewise, the AES receiver section can be connected 
to the serial input of the core DSP of the final mix 
card. 

Software Details 

The Plan 9 system is organired around distributed 
file systems and CPU servers (typically multiproces- 
sors). Computing is not done on local workstations 
(such as the Gnot) in this network; instead is it per- 
formed on fast, hot, and noisy machines located in 

air-conditioned rooms. Likewise, the file servers are 
not located adjacent to the workstation; they also are 
placed in climate-controlled environments. The file 
and CPU servers are interconnected via a variety of 
high-speed networks; the terminal workstations are 
connected via a medium-speed network (throughput 
is about 120 kbytes/sec). 

The Low-Level Interface 

The different DSP cards on the Gnot bus are pro- 
grammed through a uniform interface. The memory 
of each core DSP looks like the UNIX system's 
memory device Idev/mem, that is, it can be'ad- 
dressed, read, and written via system calls. The 
Yamaha card interface looks like a continuous string 
of oscillators; the oscillators are programmed by 
writing a [address, value] pair to the internal registers 
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of the YM-2151 chip. Above the devices (in the soft- 
ware sense) is a real-time scheduler that uses Plan 9 
streams (Presotto 1990). Streams are a way of insert- 
ing coroutines (called "line disciplines") between 
low-level drivers and high-level code. The real-time 
line discipline is responsible for picking the next 
time-tagged event out of the input queue and execut- 
ing it (i.e., reading or writing the appropriate regis- 
ter). The effect of the real-time scheduler is invisible 
to the higher-level users, as it should be. 

The programs for the DSP-16 are written in assem- 
bly language and cross-compiled on a CPU server. 
The peculiar nature of the DSP-16 register set makes 
it very difficult to write a code generator for a higher- 
level language such as C. The resulting object files 
can be downloaded from the Gnot via the mecha- 
nism described above. 

The High-Level Interface 

Our first cut at a "music" interface is a MIDI file in- 
terpreter that builds on an existing score compiler 
(Killian 1986; Kahrs, Killian, and Mathews 1986) 
called m; which m was named in 1985, long before 
M (Zicarelli 1987) appeared. Compiler m accepts an 
ASCII representation of common music notation and 
generates a stream of MIDI events; these events are 
interpreted and translated by the play program. 
Notes are assigned to one of the 128 channels on an 
oscillator card in a strict least-recently-used fashion. 
Thus, each note-on event potentially causes a full 
voice load, but we can guarantee full sonority to a 
timbre with a long decay time because the large 
number of available oscillators makes it unlikely the 
oscillator will have to be used again for a long time. 

Conclusions 

Gnusic has been tested using a complicated move- 
ment from Stravinsky's Le Sacre du Printemps, but 
no contemporary use has been made to date. 

The Gnusic organization offers potentially more 
oscillators than any other synthesizer available at 
present. However, the limited nature of the Yamaha 
YM-2151 chips precludes truly general use of the os- 

cillators. One possible use is additive synthesis-us- 
ing the "algorithm" that just adds together multiple 
oscillators, the outputs of the Yamaha oscillators can 
be added together (as usual) by the core DSP. 

Eventually, the parameter update problem (Moorer 
1981) will "bite" back at Gnusic too. As the number 
of active oscillators increases, the need to update pa- 
rameters will increase as well. This problem will re- 
main for the foreseeable future. Wider and faster 
process or buses will address this problem some- 
what. 

Although blazingly fast, the unusual nature of the 
DSP-16 register set makes coding an unpleasant task. 
One can also argue that floating-point numbers 
would be a better representation for use in signal pro- 
cessors. When Gnusic was designed, the DSP-32 was 
not fast enough to handle the mixing task. Any new 
version would use a fast floating-point chip (like the 
DSP-32C) with a C compiler. 

Gnusic was created to implement various ideas in 
orchestral synthesis and signal processing that are 
difficult to try in MIDI systems. The coexistence of a 
powerful workstation and a flexible combination of 
versatile instrument I/O cards makes such experi- 
mentation possible. 

References 

Audio Engineering Society. 1985. "Serial Transmission 
Format for Linearly Represented Digital Audio Data." 
Journal of the Audio Engineering Society 33(10):976- 
984. 

AT&T. 1987. WE DSP-16 Digital Signal Processor 
Information Manual. Murray Hill, New Jersey: AT&T. 

Alles, H. G., and G. D. Giugno. 1977. "The 4B: A One- 
Card 64-Channel Digital Synthesizer." Computer Music 
Journal 1(4):7-9. Reprinted in C. Roads and J. Strawn, 
eds. 1985. Foundations of Computer Music. Cambridge, 
Massachusetts: MIT Press, pp. 250-256. 

Chowning, J. M. 1973. "The Synthesis of Complex Audio 
Spectra by Means of Frequency Modulation." Journal of 
the Audio Engineering Society 21(7):526-534. Reprinted 
in Computer Music Journal 1(2): 46-54, and in C. Roads 
and J. Strawn, eds. 1985. Foundations of Computer 
Music. Cambridge, Massachusetts: MIT Press, pp. 6-29. 

Kahrs, M., T. J. Killian, and M. V. Mathews. 1986. 
"Computer Music Research at Bell Labs." In 
Proceedings of the International Computer Music 

Kahrs and Killian 55 



Conference. San Francisco: International Computer 
Music Association pp. 199-201. 

Killian, T. J. 1986. "Computer Music under Unix Eighth 
Edition." In Proceedings of the European Unix Systems 
User Group (EUUG) Spring Conference Cambridge, 
UK: EUUG. 

Loy, G. 1985. "Musicians Make a Standard: The MIDI 
Phenomenon." Computer Music Journal 9(4): 8-26. 
Reprinted in C. Roads, ed. 1989. The Music Machine. 
Cambridge, Massachusetts: MIT Press, pp. 181-198. 

Moore, F. R. 1988. "The Dysfunctions of MIDI." 
Computer Music Journal 12(1):19-28. 

Moorer, J. A. 1981. "Synthesizers I Have Known and 

Loved." Computer Music Journal 5(1): 4-12. Reprinted 
in C. Roads, ed. 1989. The Music Machine. Cambridge, 
Massachusetts: MIT Press, pp. 589-598 

Pike, R., D. Presotto, K. Thompson, and H. Trickey. 1990. 
"Plan 9 from Bell Labs." In Proceedings of the Summer 
1990 UK UNIX User's Group Conference. Cambridge, 
UK: EUUG. pp. 1-10. 

Presotto, D. L. 1990. "Multiprocessor Streams for Plan 9." 
In Proceedings of the Summer 1990 UK UNIX User's 
Group Conference. Cambridge, UK: EUUG. pp.11-19. 

Zicarelli, D. 1987. "M and Jam Factory." Computer Music 
Journal 11(4): 13-29. 

Computer Music Journal 56 


	Article Contents
	p. 48
	p. 49
	p. 50
	p. 51
	p. 52
	p. 53
	p. 54
	p. 55
	p. 56

	Issue Table of Contents
	Computer Music Journal, Vol. 16, No. 3 (Autumn, 1992), pp. 1-110
	Front Matter [pp.  1 - 2]
	About This Issue [p.  3]
	Errata to Holm and Holm [p.  3]
	Editor's Notes: Performing with Active Instruments [p.  4]
	Letters
	Performing with Active Instruments [pp.  5 - 6]
	Time Functions [pp.  7 - 8]

	Announcements [pp.  8 - 12]
	News [pp.  13 - 16]
	Machine Songs III: Music in the Service of Science-Science in the Service of Music [pp.  17 - 21]
	Score/Music Orientation: An Interview with Robert Rowe [pp.  22 - 32]
	Chaotic Systems as Simple (But Complex) Compositional Algorithms [pp.  33 - 47]
	Gnot Music: A Flexible Workstation for Orchestral Synthesis [pp.  48 - 56]
	A MIDI/DSP Sound Processing Environment for a Computer Music Workstation [pp.  57 - 72]
	The Interim DynaPiano: An Integrated Computer Tool and Instrument for Composers [pp.  73 - 91]
	Reviews
	Performances, Exhibitions, and Conferences
	CyberArts International [pp.  92 - 96]
	Music Publishing and Music Representation in the Technological Age: A Symposium [pp.  96 - 98]
	ROBOARD-pf-estival [pp.  98 - 100]
	Seminar on Pedagogy and Computing in Music [pp.  100 - 101]
	The National Association of Music Merchants (NAMM) Convention, January 1992 [pp.  101 - 103]

	Recordings
	untitled [pp.  103 - 104]
	untitled [pp.  104 - 105]

	Products of Interest: Product Announcements [pp.  106 - 109]
	Back Matter [pp.  110 - 110]



