Al.16

The architecture of DSP.*:
A DSP multiprocessor

Mark Kahrst

Digital Signal Processing Center
Dept. of Electrical and Computer Engineering
Rutgers University
P.O. Box 909
Piscataway, NJ 08854

Abstract:

Simple analog functions such as mixing and edit-
ing often have complex implementations in the digital
domain. Previous machines designed expressly for
such tasks, such as the Lucasfilm ASP [1] and Neve
BBC [2] machine are heavily pipelined and complex
machines with extremely fast cycle times. This paper
describes the hardware architecture of a MIMD mul-
tiprocessor designed to handle the problems of high
quality digital audio mixing, synthesis and editing.

1. Introduction

The computational demands of most DSP tasks
are beyond any single available DSwP. For example,
consider the problem of digital mixing. Moorer [1]
estimates that at 44.1 kilosamples per second, a four
band equalizer would need to execute at least one mil-
lion multiply accumulates per second. Previous
hardware solutions to this problem such as the Droid-
works "SoundDroid" [3] (nee Lucasfilm ASP) were
large and expensive machines. The Yamaha DMP-8
is a current example of how far the technology has
come in just five years. But the Yamaha machine is
limited to eight channels and is strictly a mixer with
limited functions.

Synthesis is another task which can be broken
down for multiple processors. Each processor can run
a specific synthesis algorithm; the results of these
computations can be combined by a mixing processor
and output to external converters. A truly flexible
research machine should be capable of performing
most digital audio algorithms from mixing to editing
and synthesis.

twork performed at AT&T Bell Laboratories, Murray Hill,
NJ 07974

CH2561-9/88/0000-2552 $1.00 © 1988 IEEE

If the "one processor, one voice doctrine” is accepted,
then there must be some way to combine the results
of these independent processors. Now the interpro-
cessor communication is the problem to solve (for
large problems, this assumes that the problem can be
decomposed for multiple processors).

Fortunately, telephone switching provides a solu-
tion: The time slot interchange crossbar (for a history
of telephone switching, see [4]). A time/space divi-
sion switch allows multiple processors to feed results
to a single processor through appropriate switch pro-
gramming. A programmable switch also permits the
use of "flexible topologies"; for different problems one
need only change the connections of the switch. Of
course, the switch has a delay associated with it. The
prototype has a delay of one sample time between in-
going and outgoing samples.

Time division multiplexing on serial channels is
an old telephone technology. It has also been used
for high quality audio (i.e., the AES/EBU serial for-
mat [5]). For example, at 44.1 kilosamples per
second and 16 bits per sample, the serial bandwidth is
705.6 kilobits/second. For a processor with an 8
megabit limitation, this means that the processor can
input almost 12 samples in one output sample time.
Since the data is serial, the data can be easily distri-
buted to other processors (via the switch) on a back-
plane.

DSP.*! was designed around this philosophy. An
architectural block diagram of the system is shown on
the next page.

! The name is derived from Cm* [6], an early experimental
multiprocessor designed at CMU

2552

Serial VME
Higkway bus
Processor Host
Switch
Modules Processor
V/ %

Above, processor modules are connected to the serial
highway. Each processor module has a unique ad-
dress on the highway (this address is wired on the
card). There are two traces on the backplane per pro-
cessor: one for the input to the processor (from the
switch) and one from the processor (to the switch).
All interprocessor communication is via the switch.
The switch sits between the VME bus and the host
processor and is programmed by the host processor
(the switch is covered in more detail in section 2.3).
The prototype uses a 68010 as a host processor con-
nected via a serial line to either a VAX or an Alliant.

In the remainder of the paper, the details of the
hardware architecture are described. Although the
prototype uses WE® DSP-32s [7], any processor with
a high speed serial interface could be used. This is an
additional benefit of using parts designed for tele-
phone switches.

2. Hardware architecture

This section describes the architectural and
hardware details of the prototype machine. There are
three sections, one for each card.

2.1. The host interface

All processors must use the same serial clocks to
stay in synchronization with the sample frame clocks.
These clocks are buffered by the host interface card
and put on the backplane. The card also generates
the processor clocks, so the processors can also run in
total synchronization (if required by the application).
The host interface also provides a mechanism for spy-
ing on the output of individual processors without the
intervention of the switch. Lastly, it provides a DSP-
32 for putting data out on the bus. The DSP can seri-
alize data as well as provide small filtering functions
and generation of sync clocks (if desired). The data-
path of the card is found on top of the next column:

VME Serial

pay Highway
1 x\ Status tk\
> Register
Bit clocks
Bus CIOCk. Frame clock
Interface generation|
Word clocks,,
fac—
Utility
pe—3m{ —
DSP32
NV .
\/

On this card, the host can write registers that set
the serial receive and transmit rates for all the proces-
sor modules. It also generates the clock for the pro-
cessors. As mentioned above, a DSP-32 serializes
data from the host and put it on reserved address 0.
It can also read from any address.

2.2. The DSP-32 processor module

The DSP-32 is a powerful DSpP. If the floating
point pipeline is full, it can run at 4 millions multiply
accumulates (MACs) per second. The integer section
can execute 4 MIPs at peak rate. The device comes
in two packages, a 100 pin PGA (pin grid array) with
address and data pins for an external RAM and a 40
pin DIP with strictly internal RAM and ROM. Both
devices are otherwise identical. The processor has
double buffered serial DMA so the processor need not
be directly involved with stuffing data into I/O regis-
ters. The architecture of the card is shown below:

VszE Slave Outside
ﬁ [=>1 DSP-32 World Serial
Highway

i 1 |

Mapped

Bus Bus /0

interface ™| arbiter Devices

Static

‘_J Master Memor

DSP32 Map 4*4%8K
NV le—Scrialdata]

\V

There are two DSP-32s per "processor module”.
The "master” (with external memory) is connected to
the serial lines going to and from the crossbar switch.
The "slave" is connected to external I/0O devices such
as A/D and D/A converters. It is responsible for vari-

2553

ous I/O operations such as pre and post filtering. The
8 bit parallel data ports of both DSP-32s are indirectly
connected to the VME bus. Since the 100 pin DSP-32
is limited to 56 Kbytes of external memory (16 bits of
address - 8 Kbytes of internal memory), a memory
map expands the available memory to 224 Kbytes.
The master DSP-32 can also select which word (load)
clocks to use on the transmit side to the switch; this
helps limit the transmission bandwidth?. The highest
512 bytes of the master DSP-32 memory address are
stolen for a memory mapped /O space; the memory
map resides here as do other local I/0 devices (such
as the transmit word clock select logic).

A bus controller is responsible for access to the
internal 8 bit bus. Each processor (as well as the
VME bus) must arbitrate for control of the bus. The
bus controller also controls the exchange of data
between the master and slave parallel ports of the
DSPs.

2.3. The switch

The time slot interchange switch uses a commer-
cially available telephone switch, the Siemens
PEB2040. Besides being able to operate up to 8
megabits per second, it can be programmed to be ei-
ther a time division, space division or "mixed"
time/space division switch. Internally, the switch

looks like:
| shift | Shift
l register I register
Serial Sample Serial
Inputs Memory Outputs
register register

B

Connection

Output
ICounter

frame syngf Input
Counter

Memory

Bus in[crface

2 Although serial DMA doesn’t directly involve the arith-
metic sections of the DSP-32, it does cause wait states to be in-
serted.

Data from the serial lines is deserialized by shift
registers. The data is then stored in the sample
memory according to the address in the write counter.
The input counter is synchronized with the frame sync
generated by the host interface card. The output
counter addresses the sample memory via the connec-
tion memory (e.g., the addresses are mapped). The
connection memory is, in turn, loaded by the host.
Unfortunately, the output connections must be fixed
depending on the interconnection scheme chosen
(time, space or mixed). A "mixed"” space/time switch
for 16 lines (processors) at 8 Mbits/second requires 32
switches.

In the worst case, changing a single connection in
the switch can take a full frame time. This means
that changing the entire topology of the switch is not
an action to be taken lightly. However, simple
changes can be done relatively rapidly.

3. Programming

The host machine (connected to the VME bus) is
responsible for (a) loading each processor with its
program, (b) setting up the interconnections in the
switch, (c) selecting clock rates on the host interface
card and finally (d) returning useful debugging data
to the user.

The DSP-32s on the DSP-32 processor modules
can be programmed either in C [8] or assembler.
However, this forces a user to confront the details of
frame sync and other ugly details.

Consider the following brief programming exam-
ple: To mix the outputs of processors 3,5 and 7 into
processor 8, the host must be program the switch to
select the data of processors 3,5 and 7 on a given
sample and deliver them sequentially to processor 8.
The programmer must know what output "time slots"
are used by processors 3,5 and 7. The program in
processor 8 must know that data from processors 3,5
and 7 contain the data to be mixed.

Future plans call for a task level module intercon-
nection language to hide the details of time slot as-
signment and use as well as a block level signal pro-
cessing language.

4. Acknowledgements

Herbert Alrutz and Jim Snyder have given good
advice and witty reparteé at times when both were ap-
preciated. Johnsie Chinnery did a fair share of the
wiring. Thanks to Max Mathews for encouragement.

2554

. References

J. A. Moorer, The Audio Signal Processor: The
next step in Digital Audio, in Digital Audio, B.
Blesser, B. Locanthi and T. G. Stockham (ed.),
AES, 1983, 205-215.

M. H. Jones, Processing system for the Digital
Audio Studio, in Digital Audio, B. Blesser, B.
Locanthi and T. G. Stockham (ed.), AES, 1983,
221-225.

J. Borish, J. A. Moorer and P. Nye,

SoundDroid: A New System for Electronic

Post-Production of Sound, SMPTE Journal,

May 1986, 567-571.

A. E. Joel, Digital switch - How it has

developed, IEEE Transactions on

Communications COM-27, 7 (July 1979), 948-

959.

Serial Transmission Format for Linearly

Represented Digital Audio Data, J. of the AES,
Dec. 1985, 976-984.

E. F. Gehringer, D. P. Siewiorek and Z. Segall,

Parallel Processing: The Cm* experience, Digital

Press, 1987.

R. Kershaw and al., A Programmable DSP with

32 bit floating point arithmetic, IEEE Journal of

Solid State Circuits, 1985.

B. Kernighan and D. M. Ritchie, The C

programming language, Prentice-Hall, 1978.

2555

