A28

IT’S GNOT SIGNAL PROCESSING

Mark Kahrs

Dept. of Electrical & Computer Engineering
Rutgers University
Piscataway, New Jersey 08855-0909
(908)932-4280 kahrs@winlab.rutgers.edu

Tom Killian

.AT&T Bell Laboratories
Murray Hill, New Jersey 07974

(908)582-6215
ABSTRACT

We have built an experimental machine to address three
specific problems: narrow bandwidth of the control channel;
limited access to the sound production mechanism; mixing
and effects processing. Our hardware uses an experimental
diskless workstation to control a variety of cards: an array of
DSPs; an array of FM oscillators; the ‘‘final mix’’ with AES
output; and MIDI/SMPTE V/O. Each card except the last has a
core DSP (an AT&T DSP-16) to mix the output from
upstream cards and perform effects.

1. Introduction

Existing electronic instruments have a number of diffi-
culties. We have identified three problems that we believe can
be solved.

(1) While versatile, the MIDI protocol is too slow to permit
fast changing of instrument parameters. This is a direct
result of MIDI’s design; it was really designed as a ges-
tural language and not a language to transmit large
amounts of data such as envelope parameters. It is too
slow to control many instruments simultaneously without
running into synchronization problems.

(2) Algorithmic (as opposed to sampling) synthesis is useful
because it provides a parameter space that may be
explored for creative effects. FM algorithms in particu-
lar yield sounds with rich spectra for relatively few arith-
metic operations. Currently, the largest FM synthesis
capability using Yamaha FM chips is the TX816. Access
to parameters is slow (via 8 separate MIDI streams), and
only a fixed set of operator connection topologies is
available. As a result, "Orchestral synthesis” isn’t truly
possible; it’s difficult to layer enough timbres without
running into bandwidth difficulties due to MIDI limita-
tions (this is particularly true if the 8 MIDI streams are
demultiplexed from a single source). The TX-816 has

An earlier version of this paper appeared as AES preprint 2868.

- 3645 -

tom@research.att.com

another limitation: it provides only analog outputs; these
must in turn be mixed together with an analog mixer
thereby providing extra opportunities for noise and pro-
gramming complexity.

(3) Finally, most signal processing is done by separate
"effects boxes" after the sound is generated. This elim-
inates possible feedback between the signal processing
and the audio output, except through the slow MIDI
channel. It also requires extraneous D/A and A/D
conversions that reduce the sound quality and add to the
expense of the system.

In our system, instruments are controlled over a high-speed
bus by a fast processor, sound samples may be produced by
fully programmable DSP’s, and mixing and effects processing
are integrated. The output is an AES/EBU [1] digital audio
stream that can be fed directly to a CD mastering recorder.

The "gnusic" (gnot music) project was created to over-
come these difficulties. It is based on an experimental disk-
less workstation (the "gnot") featuring a Motorola 68020 pro-
cessor, a bitmap gray level display, and an interface to a 1.5
Mb network. The Gnot is an experimental 68020 based
workstation developed as part of a grand experiment in distri-
buted computing. [2]. We have been developing an experi-
mental machine for sound synthesis based on using the gnot as
a real time controller. Our principal purpose was to explore
the notion of "orchestral" synthesis; that is, the real time syn-
thesis of large numbers of instruments comparable to that
found in a modem orchestra.

The processor (housed in the display base) has direct
access to the computational resources of instrument cards over
an 8 bit bus. The bus is distributed over a backplane to the
various cards; these cards can perform any number of func-
tions depending on the card. The architecture of the basic
machine is shown on the next page in figure 1.

CH2977-7/91/0000-3645 $1.00 © 1991 IEEE

gnot MIDI SMPTE AES

7o\

Control MiDI Final FM DSP16
Card SMPTE Mix Array Array
8
Figure 1.

Basic machine architecture

To begin with, the 8 bit data bus and associated control
signals are delivered to a control card at one end of the back-
plane. These signals arrive from the gnot via a flat ribbon
cable. The control card performs simple decoding tasks and
buffers the signals onto the backplane. It also contains a SCSI
interface for a disk when on the road. There are several dif-
ferent kinds of i/o cards. There is a MIDI/SMPTE card for
interfacing to keyboards and video tape recorders respectively.
There are three different kinds of sound generation ("instru-
ment") cards: a DSP-16 array, an FM array and the "final
mix" card. Each instrument card has a digital signal processor
(an AT&T DSP-16 [3]) for mixing the digital outputs. This
processor must (a) mix the output from the card ‘‘upstream’’
with the sample generated locally, and (b) perform any effects
desired with the leftover time. Such effects might include
filtering or feedback control of the oscillators. The basic core
includes a pseudo-dual-ported static program memory for the
DSP-16. Because the DSP-16 is so fast (80 ns cycle time),
memory access must be shared between the 8-bit processor
bus and DSP; when the processor sets the DSP to “‘run’’, it
also prevents itself from accessing the memory.

The "final mix" card is last in the chain; it does the sam-
ple rate conversion from the Yamaha sample rate to EIA rate
(44.1K). The card also contains an AES/EBU converter
attached to the serial port of the DSP-16.

The serial output section of the DSP-16 contains both
input and output sides. Each side has a shift register attached
to the internal data bus of the DSP-16. The Input Buffer Full
(IBF) and Output Shift register Empty (OSE) bits are available
to external interfaces. The chip also provides load clocks for
the shift registers and frame sync. The DSP-16 can either be a
master (called "active” in DSP-16 terminology) or a slave
("passive"). We put all the DSP-16s excepr the final mix DSP
in passive mode. They are fed clocks from the final mix DSP.
This guarantees that all DSPs are on the same output clock.
The final mix DSP also provides the left right clock so that the
channels are synchronized as well. The serial data output of
the DSP-16 is fed to the serial data input of the next DSP-16
in line. All of the serial I/O is done via flat ribbon cables on
the end of the cards (we use a 26 conductor cable with alter-
nating grounds). The cable consists of the following signals:

+ The DSP-16A is even faster: 50 ns cycle time.

DI/DO data in/data out

ICK/OCK input/output clock

ILD-/OLD- | input/output load clock

IBF input buffer full

OSE output shift register empty
SADD serial address (for TDMA mode)
LR left right clock

BCK bit clock (32 * 44.1 Khz)

YCK Yamaha clock

SYNC- frame sync

1.1. The final mix card

The final mix card has the basic ("core") DSP-16 circui-
try found on all instrument cards. A block diagram is found
below in figure 2.

backplane bus

gnot bus
interface
L gnot bus
y y to other
DSP-16 | run | control devices
static memory register
serial serial . paralle! arallel
connector port DSP-16 port 5ata bus
Figure 2.

Core DSP architecture

The gnot can write into the memory of the DSP-16; but
only when the DSP-16 is stopped. The DSP-16 is too fast to
allow true dual port access. This is perfectly acceptable since
the core program typically doesn’t change when the syn-
thesizer is running. The gnot can also set a control register
which contains the run flag and other useful bits.

1.2. FM array card

Our FM instument card uses 16 Yamaha YM-2151
oscillator integrated circuits. This is approximately the same
chip as in the Yamaha commercial product FB-01. The card is
organized as shown on the next page in figure 3.

- 3646 -

backplane

core
pdb gnot

—

oscillator
address
register

]
v

Yamaha
FM
oscillator

|

shift
register

l
y

barrel
shifter

Figure 3.
FM array block diagram

Note how the core DSP circuitry integrates into the card;
the core DSP provides a mechanism to collect samples from
all the FM chips as well as scaling and possible signal pro-
cessing hacks inside the DSP. Since the output of the Yamaha
chips is in 13-bit pseudo "floating point” format, it must be
converted to linear 16 bit for use by the DSP-16. A barrel
shifter does the trick here although it is overkill for the appli-
cation. The output of the barrel shifter is put on the parallel
input bus of the DSP-16. An auto-incremented address regis-
ter selects which FM chip is driving the shifter. Meanwhile
the serial output of the previous card is fed to the serial input
of the DSP-16, for mixing with the barrel shifter output. The
final result is put on the serial output pin which goes to the
next card in the chain.

The gnot programs the Yamaha chips one at a time by
setting a chip-select register and then writing data. The YM-
2151 is fairly slow; a bus cycle takes about 500 nanoseconds,
and incurs a 12 microsecond dead time. It takes 10 bytes to
reset a channel (i.e., gracefully bring its output to zero), 38
bytes to configure a new instrument (voice), and an additional
22 bytes to sound a note, so the worst-case reload time is
about 850 microseconds. Data intended for different chips
may be interleaved (at the expense of more writes to the chip-
select register), so most of the dead time can be recovered
when things are busy. The equivalent FB-01 system exclusive
MIDI message is 139 bytes long, requiring 44 milliseconds for
transmission.

- 3647 -

Unforwnately the voices for the YM-2151 just don’t
sound as good as the voices for the DX-7, the well known
Yamaha 6 oscillator product, nor is there available anything
comparable to the enormous library of DX-7 instruments.
There are fewer oscillators per voice on the FB-01 (4 oscilla-
tors per "algorithm" versus 6), and their envelopes are more
restricted. Of the 32 DX-7 algorithms, 25 can be simulated
(modulo the envelope problem) using a set of YM-2151 chan-
nels. It is interesting that the remaining seven algorithms (for
afficionados, 4, 6, 12, 13, 16, 17, 18) are commonly used in
our favorite DX-7 voices. In spite of all this, the YM-2151
provides us a reasonable way to get a fair number of instru-
ments in a short period of time.

Note that each Yamaha chip has 32 oscillators (16 FM
oscillators); therefore each board provides 256 FM oscillators.
For comparison, the 4B [4] at IRCAM provides a total of 64
FM oscillators per card using totally MSI scale logic.

1.3. DSP-16 array card

The DSP-16 array card has 4 DSP-16s and a core DSP.
A block diagram of the card is shown below in figure 4.

backplane
serial core parallel data bus
onnector @ T
processor 64K 2K

address static FIFO
register memory
satellite
DSP-16

4* l

satellite serial
TDMA
memory rir?g
Figure 4

DSP-16 array block diagram

The core DSP addresses the 4 satellite DSPs via the 16
bit wide parallel I/O bus. The core can address any of the
satellites as well as address a 64K word external memory This
is specifically designed for reverberation (64K is about 1.5
seconds at 44.1 K sampling rate). The serial I/O of the satel-
lites are connected together in a TDMA ring using the on chip
logic of the DSP-16 shown on the next page in figure 5:

DSP-16 . DSP-16
DI DO ICK OCK SADD DI_DOICK OCK SADD
L LJ

Figure 5
DSP-16 TDMA logic

The DSP-16 multiprocessor interface permits up to 8
processors to be connected on a bus. Each processor can be
programmed via an internal register to transmit data (and an
address) in a specific time slot. Data is transmitted (or
received) on one pin and the address is transmitted (or
received) on another pin (SADD).

The data, clock, serial address and sync pins are all bused
together. Slots must be reserved (i.e., statically allocated)
before hand as there is no contention mechanism. Further-
more, each processor must have a unique address.

The gnot has the same interface to the memory of the
satellites as it does to the core. It also has a 2K by 8 fifo
attached to the parallel I/O bus of the core for use in parameter
passing from the host. Status bits from the fifo can be used to
interrupt the core DSP should the fifo become too full and risk
data overrun.

The slave DSP’s are for general algorithmic synthesis
and DSP algorithms (including pitch detection and various
filtering algorithms). They are fast enough to compete with
specialized VLSI in additive and FM methods.

1.4. SMPTE/MIDI card

The SMPTE/MIDI card does not have a core DSP sec-
tion; it doesn’t need one. It provides a simple interface to the
SMPTE time code so that the synthesizer can be slaved to
video tape machines. The MIDI channel is formed around the
Yamaha YM-3802 MIDI Controller. While providing almost
too much of everything, it does provide a way to accept key-
board input from a keyboard controller like a KX-88. Or even
aDX-7.

1.5. AES converter

The final mix card cohabitates with an AES/EBU
receiver and transmitter. This uses the (in)famous Sony CX-
23035 and CX-23033 chips. The Yamaha sample rate
(58.8 KHz) is converted to EIA rate (44.1 KHz) by interpola-
tion and decimation by a ratio of 3:4. The output of the core is
connected (via the standard serial flat ribbon cable) to the AES
transmitter section. Likewise, the AES receiver section can be
connected the serial input of the core DSP of the final mix
card.

- 3648 -

2. Software details

The DSP-16 is programmed in assembler and cross com-
piled on a VAX-85507. The peculiar nature of the DSP-16
register set makes it very difficult to write a code generator for
C. The resulting object files can be downloaded from the gnot
via a remote file system. The file system also contains the
instrument definitions for the Yamaha oscillator chips.

Our first cut at a ‘music’ interface is a MIDI file inter-
preter which builds on an existing score compiler [5]. Notes
are assigned to one of the 128 channels on an oscillator card in
a strict least-recently-used fashion. Thus each note-on event
potentially causes a full voice load, but we guarantee full
sonority to a timbre with long decay.

3. Software development

Future software to be developed includes a score editor
and printer as well as graphical interfaces to instrument and
signal processing definitions.

4. Conclusions

Gnusic was created to try out various ideas in orchestral
synthesis and signal processing that are difficult to try out in
MIDI systems. The combination of a powerful workstation
and a flexible combination of versatile instrument I/O cards
makes such experimentation possible.

5. Bibliography

1. Serial Transmission Format for Linearly Represented

Digital Audio Data, J. of the AES, , Dec. 1985, 976-984.

R. Pike, D. Presotto, K. Thompson and H. Trickey, Plan

9 from Bell Labs, in UKUUG Proceedings of the Sum-

mer 1990 Conference, London, England, July, 1990, I-

10.

3. A. Microelectronics, WE DSP-16 Digital Signal Proces-
sor information manual, , 1987.

4, H. G. Alles and G. D. Giugno, The 4B: A One-Card
64-Channel Digital Synthesizer, in Foundations of
Computer Music, C. Roads and J. Strawn (ed.), MIT
Press, 1985, 250-256.

5. T. J. Killian, Computer Music under Unix Eighth Edi-
tion, proc. European Unix Systems User Group (EUUG)
Spring Conference, Florence, Italy, April 21-24, 1986.

3]

+VAX is a trademark of Digital Equipment Corporation

